Objective: Management of a patient presenting with a first seizure depends on the risk of additional seizures. In clinical practice, the recurrence risk is estimated by the treating physician using the neurological examination, brain imaging, a thorough history for risk factors, and routine scalp electroencephalogram (EEG) to detect abnormal epileptiform activity. The decision to use antiseizure medication can be challenging when objective findings are missing.There is a need for new biomarkers to better diagnose epilepsy following a first seizure. Recently, an EEG-based novel analytical method was reported to detect paroxysmal slowing in the cortical network of patients with epilepsy. The aim of our study is to test this method's sensitivity and specificity to predict epilepsy following a first seizure. Methods:We analyzed interictal EEGs of 70 patients admitted to the emergency department of a tertiary referral center after a first seizure. Clinical data from a follow-up period of at least 18 months were available. EEGs of 30 healthy controls were also analyzed and included. For each EEG, we applied an automated algorithm to detect paroxysmal slow wave events (PSWEs). Results:Of patients presenting with a first seizure, 40% had at least one additional recurring seizure and were diagnosed with epilepsy. Sixty percent did not report additional seizures. A significantly higher occurrence of PSWEs was detected in the first interictal EEG test of those patients who were eventually diagnosed with epilepsy. Conducting the EEG test within 72 h after the first seizure significantly increased the likelihood of detecting PSWEs and the predictive value for epilepsy up to 82%. Significance:The quantification of PSWEs by an automated algorithm can predict epilepsy and help the neurologist in evaluating a patient with a first seizure.
No diagnostic or predictive instruments to help with early diagnosis and timely therapeutic intervention are available as yet for most neuro-psychiatric disorders. A quantum potential mean and variability score (qpmvs), to identify neuropsychiatric and neurocognitive disorders with high accuracy, based on routine EEG recordings, was developed. Information processing in the brain is assumed to involve integration of neuronal activity in various areas of the brain. Thus, the presumed quantum-like structure allows quantification of connectivity as a function of space and time (locality) as well as of instantaneous quantum-like effects in information space (non-locality). EEG signals reflect the holistic (nonseparable) function of the brain, including the highly ordered hierarchy of the brain, expressed by the quantum potential according to Bohmian mechanics, combined with dendrogram representation of data and p-adic numbers. Participants consisted of 230 participants including 28 with major depression, 42 with schizophrenia, 65 with cognitive impairment, and 95 controls. Routine EEG recordings were used for the calculation of qpmvs based on ultrametric analyses, closely coupled with p-adic numbers and quantum theory. Based on area under the curve, high accuracy was obtained in separating healthy controls from those diagnosed with schizophrenia (p<0.0001), depression (p<0.0001), Alzheimer’s disease (AD; p<0.0001), and mild cognitive impairment (MCI; p<0.0001) as well as in differentiating participants with schizophrenia from those with depression (p<0.0001), AD (p<0.0001) or MCI (p<0.0001) and in differentiating people with depression from those with AD (p<0.0001) or MCI (p<0.0001). The novel EEG analytic algorithm (qpmvs) seems to be a useful and sufficiently accurate tool for diagnosis of neuropsychiatric and neurocognitive diseases and may be able to predict disease course and response to treatment.
Cancer is one of the most common families of diseases today with millions of new patients every year around the world. Bladder cancer (BC) is one of the most prevalent types of cancer affecting both genders, and it is not known to be associated with a specific group in the population. The current treatment standard for BC follows a standard weekly Bacillus Calmette–Guérin (BCG) immunotherapy-based therapy protocol which includes BCG and IL-2 injections. Unfortunately, due to the biological and clinical complexity of the interactions between the immune system, treatment, and cancer cells, clinical outcomes vary significantly among patients. Unfortunately, existing models are commonly developed for a non-existing average patient or pose strict, unrealistic, expectations on the treatment process. In this work, we propose the most extensive ordinary differential equation-based biological model of BCG treatment to date and a deep learning-based scheduling approach to obtain a personalized treatment schedule. Our results show that resulting treatment schedules favorably compare with the current standard practices and the current state-of-the-art scheduling approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.