Conversion of cellulose into platform chemicals is essential for sustainable development of the chemical industry. With this aim, single step hydrothermal conversion of cellulose to industrially important levulinic acid using zirconium dioxide as a catalyst has been investigated. A remarkably high yield (53.9 mol %) of levulinic acid with excellent accountability and total conversion of cellulose has been achieved at 180 °C reaction temperature and reaction time of 3 h with 2 wt % of catalyst and 2 g of cellulose. The major products identified were levulinic acid (LA), formic acid (FA), 5-hydroxymethylfurfural (5-HMF), furfural, and humins. Formation of humins during cellulose hydrolysis and dehydration was observed and is also confirmed by NMR and FTIR analysis. The effect of various reaction parameters such as temperature, time, substrate concentration, and catalyst loading on conversion and selectivity has been studied. The catalyst has been regenerated and recycled several times without any loss of activity and selectivity.
The number of crystal structures of diastereomeric salt pairs and especially of double salts is limited in the literature. This work exceptionally presents the structures of two constitutional isomer double...
One of the major drawbacks of diastereomeric salt precipitation based enantioseparation is the time and solvent requirement of crystallization. In the gas antisolvent (GAS) approach, supercritical carbon dioxide is applied as an antisolvent, and the precipitation takes place in a couple of minutes. By setting the process parameters diastereomeric excess, yields, and selectivity can be controlled. Applicability of the process is demonstrated on the resolution of racemic 2-methoxyphenylacetic acid with enantiopure (R)-(−)-1-cyclohexylethylamine. Diastereomeric excess values over 55 % along with 80 % yields were achieved at optimal conditions in a single step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.