Sincere efforts of researchers are underway to understand the functionality of different fats and oils in relation to cookie quality. The quality of cookie primarily relies upon the functionality of fats and oils in cookie system which ultimately is combined result of their physical, chemical, and rheological properties. Effects of some major fats and oils such as butter, bakery fat, hydrogenated fat, lard, margarine, palm oil, sunflower oil, coconut oil, and soybean oil on the physical and sensory characteristics of cookie have been studied. Previous studies reported that fats and oils had radical contribution in cookie quality and most authors agree on the fact that different fats and oils affect the cookie quality to different extent. Furthermore, it was observed by many researchers that with oils, dough was softer and cookie spread was higher as compared with that of fats. It is important to understand the molecular basis of the difference in technological changes in cookies properties with different fats and oils. This review focuses on the current knowledge of quality determining physical, chemical, thermal, microstructural, and functional properties of fats and oils in relation to cookie dough rheology and cookie quality.
This study was carried out to investigate the effect of fatty acid composition and microstructure properties of fats and oils on the textural properties of cookie dough and quality attributes of cookies. Fatty acid composition and microstructure properties of six fats and oils (butter, hydrogenated fat, palm oil, coconut oil, groundnut oil, and sunflower oil) were analyzed. Sunflower oil was found to be the most unsaturated oil with 88.39% unsaturated fatty acid content. Coconut oil and palm oil differed from other fats and oils by having an appreciable amount of lauric acid (59.36%) and palmitic acid (42.14%), respectively. Microstructure size of all fats and oils ranged from 1 to 20 μm being the largest for coconut oil and the smallest for palm oil. In palm oil, small rod-shaped and randomly arranged microstructures were observed, whereas sunflower oil and groundnut oil possessed large, scattered ovule shaped microstructures. It was reported that sunflower oil produced the softest dough, the largest cookie spread and the hardest cookie texture, whereas hydrogenated fat produced the stiffest dough, the lowest spread and most tender cookies. Statistical analysis depicted that palmitic acid and oleic acid demonstrated a positive correlation with dough hardness. Linoleic acid exhibited positive link with cookie spread ratio (r = 0.836**) and breaking strength (r = 0.792**). Microstructure size showed a significant positive relationship with dough density (r = 0.792**), cookie density (r = 0.386*), spread ratio (r = 0.312*), and breaking strength (r = 0.303*).
Common buckwheat starch modified by heat moisture treatment at different temperatures was analysed for functional, pasting, structural, thermal, gel textural and morphological properties. Heat moisture treatment decreased swelling power, solubility and oil absorption capacity while amplified water absorption capacity of buckwheat starch. Lower whiteness index with higher a* and b* values were observed for treated starches. Modified starches showed increased paste clarity and reduced syneresis. A declining order of paste clarity and freezethaw stability of native and treated starches was noticed during storage period. RVA analysis showed reduced viscosities (peak, trough, breakdown, final and setback viscosity) for hydrothermally treated starches. Increased gel hardness was observed for modified starches and starch sample treated at 85°C produced the hardest gel. FTIR spectrums of native and treated starch samples showed peaks at similar wavenumbers. Micrographs revealed the polygonal shape of native starch granules with flat areas on surface. Increased agglomeration in heat moisture treated starch samples was noticed in scanned images of starches. X-ray diffraction analysis showed 'A' type crystalline pattern in native starch of common buckwheat and no alteration in crystalline pattern due to hydrothermal treatment was observed. Relative crystallinity of native buckwheat starch decreased during heat moisture treatment and the minimum value was recorded for starches treated at 85°C. Differential scanning calorimetry showed raised gelatinisation temperatures (T O , T P and T C) and reduced DH values for hydrothermal treated starches. Keywords Common buckwheat starch Á Hydrothermal treatment Á Pasting properties Á X-ray diffractometry Á Thermal properties Electronic supplementary material The online version of this article (
Effects of fats and oils on pasting and textural properties of soft and hard wheat flours were investigated. Fats and oils significantly diminished peak viscosity, trough, breakdown, setback, final viscosity and escalated the pasting temperature. Effects on pasting properties were found more noticeable for soft wheat flour. Pasting properties of soft and hard wheat flour were significantly affected by coconut oil and hydrogenated fat. Texture analyser results divulged that fats and oils decreased the flour gel hardness, adhesiveness, gumminess and chewiness of flour gel of both varieties, whereas gel springiness was improved. Textural properties of wheat flour gels of both soft and hard wheat varieties were influenced most extensively by groundnut oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.