In 2005, using a famous lemma of Atkin and Swinnerton-Dyer (Some properties of partitions, Proc. Lond. Math. Soc. (3) 4 (1954), 84–106), Yesilyurt (Four identities related to third order mock theta functions in Ramanujan’s lost notebook, Adv. Math. 190 (2005), 278–299) proved four identities for third order mock theta functions found on pages 2 and 17 in Ramanujan’s lost notebook. The primary purpose of this paper is to offer new proofs in the spirit of what Ramanujan might have given in the hope that a better understanding of the identities might be gained. Third order mock theta functions are intimately connected with ranks of partitions. We prove new dissections for two rank generating functions, which are keys to our proof of the fourth, and the most difficult, of Ramanujan’s identities. In the last section of this paper, we establish new relations for ranks arising from our dissections of rank generating functions.
In 1982, Gessel showed that the Apéry numbers associated to the irrationality of ζ(3) satisfy Lucas congruences. Our main result is to prove corresponding congruences for all known sporadic Apéry-like sequences. In several cases, we are able to employ approaches due to McIntosh, Samol-van Straten and Rowland-Yassawi to establish these congruences. However, for the sequences labeled s 18 and (η) we require a finer analysis.As an application, we investigate modulo which numbers these sequences are periodic. In particular, we show that the Almkvist-Zudilin numbers are periodic modulo 8, a special property which they share with the Apéry numbers. We also investigate primes which do not divide any term of a given Apéry-like sequence.
Fix an elliptic curve E over Q. An extremal prime for E is a prime p of good reduction such that the number of rational points on E modulo p is maximal or minimal in relation to the Hasse bound, i.e. ap(E) = ± 2 √ p . Assuming that all the symmetric power L-functions associated to E have analytic continuation for all s ∈ C, satisfy the expected functional equation and the Generalized Riemann Hypothesis, we provide upper bounds for the number of extremal primes when E is a curve without complex multiplication. In order to obtain this bound, we use explicit equidistribution for the Sato-Tate measure as in the work of Rouse and Thorner [RT17], and refine certain intermediate estimates taking advantage of the fact that extremal primes are less probable than primes where ap(E) is fixed because of the Sato-Tate distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.