Main objective of present work is to study the efficiency of mixed fuel towards solution combustion synthesis of alumina powder, which otherwise prepared by single fuel and study of properties of final product with mixed fuel approach. Two different fuels, glycine and urea, along with aluminium nitrates have been used to prepare nanophase alumina powder. Different fuel to oxidizer ratios and different percentage combination of two fuels were used to prepare six samples. In all samples, nanoscale particle size obtained. Parameter which continuously changes the results of various characterisations is percentage combination of two fuels. In case where percentage of urea is higher than glycine reaction takes place with high exothermicity and hence crystallinity in product phase, whereas glycine promotes amorphous character. With mixed fuel approach, crystallinity can be enhanced easily, by calcinations of powder product at low temperature, because due to mixed urea and glycine, there is already some fraction of crystallinity observed. Overall mixed fuel approach has ability to produce nanophase alumina powder with wide range of particles size.
Purpose
Hot corrosion is the major degradation mechanism of failure of boiler and gas turbine components. The present work aims to investigate the hot corrosion resistance of detonation gun sprayed (D-gun) Cr2O3-75 per cent Al2O3 ceramic coating on ASTM-SA210-A1 boiler steel.
Design/methodology/approach
The coating exhibits nearly uniform, adherent and dense microstructure with porosity less than 0.8 per cent. Thermogravimetry technique is used to study the high temperature hot corrosion behavior of bare and coated boiler steel in molten salt environment (Na2SO4-60 per cent V2O5) at high temperature 900°C for 50 cycles. The corrosion products are analyzed by using X-ray diffraction, scanning electron microscopy (SEM) and field emission scanning electron microscope/energy-dispersive analysis (EDAX) to reveal their microstructural and compositional features for elucidating the corrosion mechanisms.
Findings
During investigations, it was found that the Cr2O3-75 per cent Al2O3 coating on Grade A-1 boiler steel is found to be very effective in decreasing the corrosion rate in the molten salt environment at 900°C. The coating has shown lesser weight gains along with better adhesiveness of the oxide scales with the substrate till the end of the experiment. Thus, coatings serve as an effective diffusion barrier to preclude the diffusion of oxygen from the environment into the substrate boiler steel.
Research limitations/implications
Therefore, it is concluded that the better hot corrosion resistance of the coating is due to the formation of desirable microstructural features such as very low porosity, uniform fine grains and the flat splat structures in the coating; as compared to the bare substrate under cyclic conditions.
Practical implications
This research is useful for coal-fired boilers and other power plant boilers.
Social implications
This research is useful for power generation plants.
Originality/value
There is no reported literature on hot corrosion behavior of Cr2O3-75 per cent Al2O3 coating deposited on the selected substrates by D-gun spray technique. The present work has been focused to study the influence of the Cr2O3-75 per cent Al2O3 coating developed with D-gun spraying technique on high temperature corrosion behavior of ASTM-SA210-A-1 boiler steel in an aggressive environment of Na2SO4-60 per cent V2O5 molten salt at 900°C under cyclic conditions.
The objective of the present study is to propose a cost-effective process for modifying commercially available coatings by gas nitriding using commonly available equipment and starting materials. Al-Cr and Ti-Al metallic coatings were deposited on Superfer 800H (Fe-based superalloy) using a plasma spray process. Then the gas nitriding of the coatings was done in the lab and the parameters were optimized after conducting several trials on plasma-sprayedcoated specimens. Characterization and high-temperature corrosion behavior of coatings after exposure to air and molten salt at 900°C were studied under cyclic conditions. Techniques like XRD, SEM/EDX, and X-ray mapping analysis were used for the characterization of the coatings and analysis of the oxide scale. Both the coatings successfully protected the substrate and were effective in decreasing the corrosion rate when subjected to cyclic oxidation (Type-I hot corrosion) at 900°C for 50 cycles in air and molten salt (a salt mixture of Na 2 SO 4 -60%V 2 O 5 dissolved in distilled water). Based on the findings of the present study, the coatings under study are recommended for tapplications to super-heater and reheater tubes of boilers and all those surfaces that face fireside corrosion, such as fluidized beds, industrial waste incinerators, internal combustion engines, gas turbines or steam turbines, to provide protection against degradation in these environments. The cost of the product/process is approximately Rs. 0.62 per mm 2 in case of Al-Cr coating and Rs. 1.86 per mm 2 in case of Ti-Al coating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.