We study the contact process in the regime of small infection rates on finite scale-free networks with stationary dynamics based on simultaneous updating of all connections of a vertex. We allow the update rates of individual vertices to increase with the strength of a vertex, leading to a fast evolution of the network. We first develop an approach for inhomogeneous networks with general kernel and then focus on two canonical cases, the factor kernel and the preferential attachment kernel. For these specific networks we identify and analyse four possible strategies how the infection can survive for a long time. We show that there is fast extinction of the infection when neither of the strategies is successful, otherwise there is slow extinction and the most successful strategy determines the asymptotics of the metastable density as the infection rate goes to zero. We identify the domains in which these strategies dominate in terms of phase diagrams for the exponent describing the decay of the metastable density.MSc Classification: Primary 05C82; Secondary 82C22.
We investigate the contact process on four different types of scale-free inhomogeneous random graphs evolving according to a stationary dynamics, where each potential edge is updated with a rate depending on the strength of the adjacent vertices. Depending on the type of graph, the tail exponent of the degree distribution and the updating rate, we find parameter regimes of fast and slow extinction and in the latter case identify metastable exponents that undergo first order phase transitions.Résumé: Nous étudions le processus de contact sur quatre types différents de graphes aléatoires inhomogènes invariants d'échelle évoluant selon une dynamique stationnaire, où chaque arête potentielle est rafraîchie à un taux dépendant de la force des sommets adjacents. En fonction du type de graphe, de l'exposant de la queue de distribution des degrés et du taux de rafraîchissement, nous trouvons des régimes d'extinction rapide ou lente et, dans ce dernier cas, nous identifions des exposants métastables qui subissent des transitions de phase de premier ordre.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.