Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book is ideal as an advanced undergraduate to graduate-level textbook, or as a reference for researchers.
Over the past few years, several non-oscillatory central schemes for hyperbolic conservation laws have been proposed for approximating the solution of the Ideal MHD equations and similar astrophysical models. The simplicity, versatility, and robustness of these black-box type schemes for simulating MHD flows suggest their further development for solving MHD models with more complex wave structures. In this work we construct a non-oscillatory central scheme for the Hall MHD equations and use it to conduct a study of the magnetic reconnection phenomenon in flows governed by this model.
A simplified view of the space of optimised stellarators has the potential to guide and aid the design efforts of magnetic confinement configurations suitable for future fusion reactors. We present one such view for the class of quasisymmetric stellarators based on their approximate description near their centre (magnetic axis). The result is a space that captures existing designs and presents new ones, providing a common framework to study them. Such a simplified construction offers a basic topological approach, guided by certain theoretical and physical choices, which this paper presents in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.