In this paper, a comparative study is done on the time and frequency domain tuning strategies for fractional order (FO) PID controllers to handle higher order processes. A new fractional order template for reduced parameter modelling of stable minimum/non-minimum phase higher order processes is introduced and its advantage in frequency domain tuning of FOPID controllers is also presented. The time domain optimal tuning of FOPID controllers have also been carried out to handle these higher order processes by performing optimization with various integral performance indices. The paper highlights on the practical control system implementation issues like flexibility of online autotuning, reduced control signal and actuator size, capability of measurement noise filtration, load disturbance suppression, robustness against parameter uncertainties etc. in light of the above tuning methodologies.
A novel fractional order (FO) fuzzy Proportional-Integral-Derivative (PID) controller has been proposed in this paper which works on the closed loop error and its fractional derivative as the input and has a fractional integrator in its output. The fractional order differ-integrations in the proposed fuzzy logic controller (FLC) are kept as design variables along with the input-output scaling factors (SF) and are optimized with Genetic Algorithm (GA) while minimizing several integral error indices along with the control signal as the objective function. Simulations studies are carried out to control a delayed nonlinear process and an open loop unstable process with time delay. The closed loop performances and controller efforts in each case are compared with conventional PID, fuzzy PID and PI λ D μ controller subjected to different integral performance indices. Simulation results show that the proposed fractional order fuzzy PID controller outperforms the others in most cases.
The continuous and discrete time Linear Quadratic Regulator (LQR) theory has been used in this paper for the design of optimal analog and discrete PID controllers respectively. The PID controller gains are formulated as the optimal state-feedback gains, corresponding to the standard quadratic cost function involving the state variables and the controller effort. A real coded Genetic Algorithm (GA) has been used next to optimally find out the weighting matrices, associated with the respective optimal state-feedback regulator design while minimizing another time domain integral performance index, comprising of a weighted sum of Integral of Time multiplied Squared Error (ITSE) and the controller effort. The proposed methodology is extended for a new kind of fractional order (FO) integral performance indices. The impact of fractional order (as any arbitrary real order) cost function on the LQR tuned PID control loops is highlighted in the present work, along with the achievable cost of control. Guidelines for the choice of integral order of the performance index are given depending on the characteristics of the process, to be controlled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.