We experimentally study thermoacoustic transitions in an annular combustor consisting of sixteen premixed, swirl-stabilized turbulent flames. We show the changes in the characteristics of bifurcations leading to the state of longitudinal thermoacoustic instability (TAI) when equivalence ratio and bulk velocity are systematically varied. Depending upon the bulk velocity, we observe different states of combustor operation when the equivalence ratio is varied. These states include combustion noise, intermittency, low-amplitude TAI, mixed-mode oscillations (MMO), and high-amplitude TAI. We closely examine the special case of MMO that is encountered during the transition from low-amplitude TAI to high-amplitude TAI. We also discuss the global and local flame dynamics observed during the state of MMO. We find that during epochs of low-amplitude oscillations of MMO, all the flames are partially synchronized, while during epochs of high-amplitude oscillations, all the flames are perfectly synchronized. Finally, we replicate the criticalities of bifurcation of the annular combustor in a phenomenological model containing sixth-order nonlinearities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.