Today's Cyber-Physical Systems (CPS) are typically distributed over several computing nodes communicating by way of shared buses such as Controller Area Network (CAN). Their control performance gets degraded due to variable delays (jitters) incurred by messages on the shared CAN bus due to contention and network overhead. This work presents a novel online delay prediction approach that predicts the message delay at runtime based on real-time traffic information on CAN. It leverages the proposed method to improve control quality, by compensating for the message delay using the Model Predictive Control (MPC) algorithm in designing the controller. By simulating an automotive Cruise Control system and a DC Motor plant in a CAN environment, it goes on to demonstrate that the delay prediction is accurate, and that the MPC design which takes the message delay into consideration, performs considerably better. It also implements the proposed method on an 8-bit 16MHz work goes on to demonstrate that the delay prediction is accurate, and that the MPC design which takes the message delay into consideration, performs considerably better. It also implements the proposed approach on a low end microcontroller (8bit, 16MHz ATmega328P) and measures the time taken for predicting the delay for each message (execution overhead).The obtained results clearly indicate that the method is computationally feasible for use in a real-time scenario.To my parents, my sister, and my grandparents for the unconditional love and support.iv I would like to extend my special thanks to Dr. Anton Cervin (Lund University) for clarifying queries about TrueTime and Dr. Liuping Wang (RMIT University) for the discussions on MPC which proved invaluable in my research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.