As communities reopen following shelter-in-place orders, they are facing two conflicting objectives. The first is to keep the COVID-19 fatality rate down. The second is to revive the U.S. economy and the livelihood of millions of Americans. In this paper, a team of researchers from the Center on Stochastic Modeling, Optimization, & Statistics (COSMOS) at the University of Texas at Arlington, in collaboration with researchers from University of Texas Southwestern Medical Center and Harvard Medical School, has formulated a computationally-efficient optimization framework, referred to as COSMOS COVID-19 Linear Programming (CC19LP), to study the delicate balance between the expected fatality rate and the level of normalcy in the community. Given the disproportionate fatality characteristics of COVID-19 among those in different age groups or with an underlying medical condition or those living with crowding, the key to the CC19LP framework is a focus on "key contacts" that separate individuals at higher risk from the rest of the population. The philosophy of CC19LP lies in maximizing protection of key contacts, so as to shield high-risk individuals from infection. Given the lack of pharmaceutical solutions, i.e., a vaccine or cure, the CC19LP framework minimizes expected fatalities by optimizing the use of non-pharmaceutical interventions, namely COVID-19 testing; personal protective equipment; and social precautions, such as distancing, hand-washing, and face coverings. Low-risk individuals that are not key contacts, including most children, are unrestricted and can choose to participate in pre-pandemic normal activities, which eliminates the need for compliance across the entire population. Consequently, the CC19LP framework demonstrates optimal strategies for protecting high-risk individuals while reopening communities.
As communities reopen following shelter-in-place orders, they are facing two conflicting objectives. The first is to keep the COVID-19 fatality rate down. The second is to revive the U.S. economy and the livelihood of millions of Americans. In this paper, a team of researchers from the Center on Stochastic Modeling, Optimization, & Statistics (COSMOS) at the University of Texas at Arlington, in collaboration with researchers from University of Texas Southwestern Medical Center and Harvard Medical School, has formulated a computationally-efficient optimization framework, referred to as COSMOS COVID-19 Linear Programming (CC19LP), to study the delicate balance between the expected fatality rate and the level of normalcy in the community. Given the disproportionate fatality characteristics of COVID-19 among those in different age groups or with an underlying medical condition or those living with crowding, the key to the CC19LP framework is a focus on "key contacts" that separate individuals at higher risk from the rest of the population. The philosophy of CC19LP lies in maximizing protection of key contacts, so as to shield high-risk individuals from infection. Given the lack of pharmaceutical solutions, i.e., a vaccine or cure, the CC19LP framework minimizes expected fatalities by optimizing the use of non-pharmaceutical interventions, namely COVID-19 testing; personal protective equipment; and social precautions, such as distancing, hand-washing, and face coverings. Low-risk individuals that are not key contacts, including most children, are unrestricted and can choose to participate in pre-pandemic normal activities, which eliminates the need for compliance across the entire population. Consequently, the CC19LP framework demonstrates optimal strategies for protecting high-risk individuals while reopening communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.