Injury caused by distention of the arterial wall by balloon angioplasty can result in apoptosis and vascular smooth muscle cell proliferation. Here, we report that a brief exposure of the arterial lumen to a genetically engineered, attenuated herpes simplex virus 1 blocks activation of caspase 3-dependent apoptosis and MAPKdependent cell proliferation induced by carotid artery balloon angioplasty and ligation to reduce blood flow. The procedure enables the restoration of the endothelial cell layer lining the lumen and prevents neointimal hyperplasia and restenosis. These findings have a broad application in prevention of balloon angioplasty-induced restenosis.neointimal hyperplasia ͉ restenosis ͉ vascular smooth muscle cells ͉ endothelial cells
Background-Arterial remodeling occurs as a response to hemodynamic change and direct vessel wall injury through the process of neointimal hyperplasia (NH). A concomitant response of vascular smooth muscle cell (VSMC) proliferation and apoptosis exists. The purpose of this study is to assess the cellular response of vessels following exposure to low shear stress (τ) and balloon injury in order to further elucidate the mechanisms underlying vascular injury. Our hypothesis is that the combination of low τ and balloon injury results in NH approximating that seen in clinical arterial restenosis, and that quantitative analysis of VSMC proliferation and apoptosis correlates with the associated increase in arterial remodeling.
The recombinant form of the endogenous anticoagulant, tissue factor pathway inhibitor (rTFPI), is a potent inhibitor of Factor Xa (FXa) and the tissue factor-factor VIIa (TF:VIIa) complex. Surface-immobilized rTFPI reduces the thrombogenicity and intimal hyperplasia associated with synthetic vascular grafts in animal models and specifically reduces fibrin deposition on collagen-impregnated Dacron grafts from native blood in an in vitro flow model. The FXa inhibitory capacity of rTFPI in the bulk phase has been demonstrated in static systems and immobilized rTFPI reduces fibrin deposition in whole blood in vitro and animal studies; however, the specific mode of this anticoagulation has not been studied. Therefore, a comparison was made between the FXa binding capacity of two forms of immobilized rTFPI, i.e., passively adsorbed and covalently bound. The rTFPI-coated surfaces were evaluated using a parallel-plate flow reactor and comparing the amount of FXa exiting the flow chamber after exposure to an rTFPI-coated versus an uncoated plate. The results demonstrate that adsorbed rTFPI exhibits increased binding capacity (1.5-3.6 times) the expected stoichiometry via interactions with the C-terminus, whereas covalently-bound rTFPI interacts with FXa in a 1:1 stoichiometry. Thus, the results imply that specific FXa inhibition is a key component of the anticoagulant effect of rTFPI-coated surfaces and that passive adsorption of rTFPI to glass surfaces produces a more effective coating than covalent binding of rTFPI.
The mainstay of treatment for long-segment small-vessel chronic occlusive disease not amenable to endovascular intervention remains surgical bypass grafting using autologous vein. The procedure is largely successful and the immediate operative results almost always favorable. However, the lifespan of a given vein graft is highly variable, and less than 50% will remain primarily patent after 5 years. The slow process of graft malfunction is a result of the vein's chronic maladaptive response to the systemic arterial environment, its primary component being the uncontrolled proliferation of vascular smooth muscle cells (SMCs). It has recently been suggested that this response might be attenuated through pre-implantation genetic modification of the vein, so-called gene therapy for the extension of vein graft patency. Gene therapy seems particularly well suited for the prevention or postponement of vein graft failure since: (1) the stimulation of SMC proliferation appears to largely be an early and transient process, matching the kinetics of current gene transfer technology; (2) most veins are relatively normal and free of disease at the time of bypass allowing for effective gene transfer using a variety of systems; and (3) the target tissue is directly accessible during operation because manipulation and irrigation of the vein is part of the normal workflow of the surgical procedure. This review briefly summarizes the current knowledge of the incidence and basic mechanisms of vein graft failure, the vector systems and molecular targets that have been proposed as possible pre-treatments, the results of experimental genetic modification of vein grafts, and the few available clinical studies of gene therapy for vascular proliferative disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.