The recreational use of cannabis has sharply increased in recent years in parallel with its legalization and decriminalization in several countries. Commonly, the traditional cannabis has been replaced by potent synthetic cannabinoids and cannabimimetics in various forms. Despite overwhelming public perception of the safety of these substances, an increasing number of serious cardiovascular adverse events have been reported in temporal relation to recreational cannabis use. These have included sudden cardiac death, vascular (coronary, cerebral and peripheral) events, arrhythmias and stress cardiomyopathy among others. Many of the victims of these events are relatively young men with few if any cardiovascular risk factors. However, there are reasons to believe that older individuals and those with risk factors for or established cardiovascular disease are at even higher danger of such events following exposure to cannabis. The pathophysiological basis of these events is not fully understood and likely encompasses a complex interaction between the active ingredients (particularly the major cannabinoid, Δ9-tetrahydrocannabinol), and the endo-cannabinoid system, autonomic nervous system, as well as other receptor and non-receptor mediated pathways. Other complicating factors include opposing physiologic effects of other cannabinoids (predominantly cannabidiol), presence of regulatory proteins that act as metabolizing enzymes, binding molecules, or ligands, as well as functional polymorphisms of target receptors. Tolerance to the effects of cannabis may also develop on repeated exposures at least in part due to receptor downregulation or desensitization. Moreover, effects of cannabis may be enhanced or altered by concomitant use of other illicit drugs or medications used for treatment of established cardiovascular diseases. Regardless of these considerations, it is expected that the current cannabis epidemic would add significantly to the universal burden of cardiovascular diseases.Electronic supplementary materialThe online version of this article (10.1007/s40119-017-0102-x) contains supplementary material, which is available to authorized users.
Background: Cardiac amyloidosis is a substantially underdiagnosed disease, and contemporary estimates of the epidemiology of amyloidosis are lacking. This study aims to determine the incidence and prevalence of cardiac amyloidosis among Medicare beneficiaries from 2000 to 2012. Methods and Results: Medicare beneficiaries were counted in the prevalence cohort in each year they had (1) ≥1 principal or secondary International Classification of Diseases , Ninth Revision code for amyloidosis and (2) ≥1 principal or secondary International Classification of Diseases, Ninth Revision code for heart failure or cardiomyopathy within 2 years after the systemic amyloidosis code. A beneficiary was counted in the incidence cohort only during the first year in which they met criteria. Primary outcomes included the prevalence and incidence of hospitalizations for cardiac amyloidosis. There were 4746 incident cases of cardiac amyloidosis in 2012 and 15 737 prevalent cases in 2012. There was also a significant increase in the prevalence rate (8 to 17 per 100 000 person-years) and incidence rate (18 to 55 per 100 000 person-years) from 2000 to 2012, most notable after 2006. Incidence and prevalence increased substantially more among men, the elderly, and in blacks. Conclusions: The incidence and prevalence rates of cardiac amyloidosis are higher than previously thought. The incidence and prevalence rates of cardiac amyloidosis among hospitalized patients have increased since 2000, particularly among specific patient subgroups and after 2006, suggesting improved amyloidosis awareness and higher diagnostic rates with noninvasive imaging. In light of these trends, cardiac amyloidosis should be considered during the initial work up of patients ≥65 years old hospitalized with heart failure.
Background: Cardiac dysfunction and cardiovascular events are prevalent among patients with chronic kidney disease without overt obstructive coronary artery disease, but the mechanisms remain poorly understood. Coronary microvascular dysfunction has been proposed as a link between abnormal renal function and impairment of cardiac function and cardiovascular events. We aimed to investigate the relations between chronic kidney disease, coronary microvascular dysfunction, cardiac dysfunction, and adverse cardiovascular outcomes. Methods: Patients undergoing cardiac stress positron emission tomography, echocardiogram, and renal function ascertainment at Brigham and Women’s Hospital were studied longitudinally. Patients free of overt coronary (summed stress score <3 and without a history of ischemic heart disease), valvular, and end-organ disease were followed up for the adverse composite outcome of death or hospitalization for myocardial infarction or heart failure. Coronary flow reserve (CFR) was determined from positron emission tomography. Echocardiograms were used to measure cardiac mechanics: diastolic (lateral and septal E/e’) and systolic (global longitudinal, radial, and circumferential strain). Image analyses and event adjudication were blinded. The associations between estimated glomerular filtration rate (eGFR), CFR, diastolic and systolic indices, and adverse cardiovascular outcomes were assessed in adjusted models and mediation analyses. Results: Of the 352 patients (median age, 65 years; 63% female; 22% black) studied, 35% had an eGFR <60 mL·min −1 ·1.73 m −2 , a median left ventricular ejection fraction of 62%, and a median CFR of 1.8. eGFR and CFR were associated with diastolic and systolic indices, as well as future cardiovascular events (all P <0.05). In multivariable models, CFR, but not eGFR, was independently associated with cardiac mechanics and cardiovascular events. The associations between eGFR, cardiac mechanics, and cardiovascular events were partly mediated via CFR. Conclusions: Coronary microvascular dysfunction, but not eGFR, was independently associated with abnormal cardiac mechanics and an increased risk of cardiovascular events. Coronary microvascular dysfunction may mediate the effect of chronic kidney disease on abnormal cardiac function and cardiovascular events in those without overt coronary artery disease.
Maternal hyperglycaemia has a profound impact on the developing foetus and increases the risk of developing abnormalities like obesity, impaired glucose tolerance and insulin secretory defects in the post-natal life. Increased levels of glucose in the blood stream due to diabetes causes visual disorders like retinopathy. However, the impact of maternal hyperglycaemia due to pre-existing or gestational diabetes on the developing foetal retina is unknown. The aim of this work was to study the effect of hyperglycaemia on the developing retina using zebrafish as a vertebrate model. Wild-type and transgenic zebrafish embryos were exposed to 0, 4 and 5% D-Glucose in a pulsatile manner to mimic the fluctuations in glycaemia experienced by the developing foetus in pregnant women with diabetes. The zebrafish embryos displayed numerous ocular defects associated with altered retinal cell layer thickness, increased presence of macrophages, and decreased number of Müeller glial and retinal ganglion cells following high-glucose exposure. We have developed a model of gestational hyperglycaemia using the zebrafish embryo to study the effect of hyperglycaemia on the developing embryonic retina. The data suggests that glucose exposure is detrimental to the development of embryonic retina and the legacy of this exposure may extend into adulthood. These data suggest merit in retinal assessment in infants born to mothers with pre-existing and gestational diabetes both in early and adult life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.