Node classification on graphs can be formulated as the Dirichlet problem on graphs where the signal is given at the labeled nodes, and the harmonic extension is done on the unlabeled nodes. This paper considers a time-dependent version of the Dirichlet problem on graphs and shows how to improve its solution by learning the proper initialization vector on the unlabeled nodes. Further, we show that the improved solution is at par with state-of-the-art methods used for node classification. Finally, we conclude this paper by discussing the importance of parameter t, pros, and future directions.
Node classification on graphs can be formulated as the Dirichlet problem on graphs where the signal is given at the labeled nodes, and the harmonic extension is done on the unlabeled nodes. This paper considers a time-dependent version of the Dirichlet problem on graphs and shows how to improve its solution by learning the proper initialization vector on the unlabeled nodes. Further, we show that the improved solution is at par with state-of-the-art methods used for node classification. Finally, we conclude this paper by discussing the importance of parameter t, pros, and future directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.