Deterministic execution offers many benefits for debugging, fault tolerance, and security. Current methods of executing parallel programs deterministically, however, often incur high costs, allow misbehaved software to defeat repeatability, and transform time-dependent races into input-or path-dependent races without eliminating them. We introduce a new parallel programming model addressing these issues, and use Determinator, a proof-of-concept OS, to demonstrate the model's practicality. Determinator's microkernel API provides only "shared-nothing" address spaces and deterministic interprocess communication primitives to make execution of all unprivileged code-well-behaved or notprecisely repeatable. Atop this microkernel, Determinator's user-level runtime adapts optimistic replication techniques to offer a private workspace model for both thread-level and process-level parallel programing. This model avoids the introduction of read/write data races, and converts write/write races into reliably-detected conflicts. Coarse-grained parallel benchmarks perform and scale comparably to nondeterministic systems, on both multicore PCs and across nodes in a distributed cluster.
Timing side-channels represent an insidious security challenge for cloud computing, because: (a) massive parallelism in the cloud makes timing channels pervasive and hard to control; (b) timing channels enable one customer to steal information from another without leaving a trail or raising alarms; (c) only the cloud provider can feasibly detect and report such attacks, but the provider's incentives are not to; and (d) resource partitioning schemes for timing channel control undermine statistical sharing efficiency, and, with it, the cloud computing business model. We propose a new approach to timing channel control, using provider-enforced deterministic execution instead of resource partitioning to eliminate timing channels within a shared cloud domain. Provider-enforced determinism prevents execution timing from affecting the results of a compute task, however large or parallel, ensuring that a task's outputs leak no timing information apart from explicit timing inputs and total compute duration. Experiments with a prototype OS for deterministic cloud computing suggest that such an approach may be practical and efficient. The OS supports deterministic versions of familiar APIs such as processes, threads, shared memory, and file systems, and runs coarse-grained parallel tasks as efficiently and scalably as current timing channel-ridden systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.