It has recently been demonstrated that black hole dynamics at large D is dual to the motion of a probe membrane propagating in the background of a spacetime that solves Einstein's equations. The equation of motion of this membrane is determined by the membrane stress tensor. In this paper we 'improve' the membrane stress tensor derived in earlier work to ensure that it defines consistent probe membrane dynamics even at finite D while reducing to previous results at large D. Our improved stress tensor is the sum of a Brown York term and a fluid energy momentum tensor. The fluid has an unusual equation of state; its pressure is nontrivial but its energy density vanishes. We demonstrate that all stationary solutions of our membrane equations are produced by the extremization of an action functional of the membrane shape. Our action is an offshell generalization of the membrane's thermodynamical partition function. We demonstrate that the thermodynamics of static spherical membranes in flat space and global AdS space exactly reproduces the thermodynamics of the dual Schwarzschild black holes even at finite D. We study the long wavelength dynamics of membranes in AdS space, and demonstrate that the boundary 'shadow' of this membrane dynamics is boundary hydrodynamics with with a definite constitutive relation. We determine the explicit form of shadow dual boundary stress tensor upto second order in derivatives of the boundary temperature and velocity, and verify that this stress tensor agrees exactly with the fluid gravity stress tensor to first order in derivatives, but deviates from the later at second order and finite D. 4 The constant λ in (1.4) is proportional to (minus of) the usual cosmological constant. We have chosen the normalization of λ to ensure that AdS D with radius 1 √ λ is a solution the equations (1.4) when λ is positive, while de Sitter space with radius 1 √ −λ solves (1.4) when λ is negative. Upon setting λ = 0 (1.4) reduces to the usual (flat space) vacuum Einstein equations.
We generalize previously obtained results for the (all orders in the ’t Hooft coupling) thermal free energy of bosonic and fermionic large N Chern-Simons theories with fundamental matter, to values of the chemical potential larger than quasiparticle thermal masses. Building on an analysis by Geracie, Goykhman and Son, we present a simple explicit formula for the occupation number for a quasiparticle state of any given energy and charge as a function of the temperature and chemical potential. This formula is a generalization to finite ’t Hooft coupling of the famous occupation number formula of Bose-Einstein statistics, and implies an exclusion principle for Chern-Simons coupled bosons: the total number of bosons occupying any particular state cannot exceed the Chern-Simons level. Specializing our results to zero temperature we construct the phase diagrams of these theories as a function of chemical potential and the UV parameters. At large enough chemical potential, all the bosonic theories we study transit into a compressible Bose condensed phase in which the runaway instability of free Bose condensates is stabilized by the bosonic exclusion principle. This novel Bose condensate is dual to — and reproduces the thermodynamics of — the fermionic Fermi sea.
We explicitly construct every kinematically allowed three particle graviton-graviton-P and photonphoton-P S-matrix in every dimension and for every choice of the little group representation of the massive particle P . We also explicitly construct the spacetime Lagrangian that generates each of these couplings. In the case of gravitons we demonstrate that this Lagrangian always involves (derivatives of) two factors of the Riemann tensor, and so is always of fourth or higher order in derivatives. This result verifies one of the assumptions made in the recent preprint [1] while attempting to establish the rigidity of the Einstein tree level S-matrix within the space of local classical theories coupled to a collection of particles of bounded spin.
In this paper, we continue the study of $$ T\overline{T} $$ T T ¯ deformation in d = 1 quantum mechanical systems and propose possible analogues of $$ J\overline{T} $$ J T ¯ deformation and deformation by a general linear combination of $$ T\overline{T} $$ T T ¯ and $$ J\overline{T} $$ J T ¯ in quantum mechanics. We construct flow equations for the partition functions of the deformed theory, the solutions to which yields the deformed partition functions as integral of the undeformed partition function weighted by some kernels. The kernel formula turns out to be very useful in studying the deformed two-point functions and analyzing the thermodynamics of the deformed theory. Finally, we show that a non-perturbative UV completion of the deformed theory is given by minimally coupling the undeformed theory to worldline gravity and U(1) gauge theory.
We consider Chern-Simons theory coupled to massive fundamental matter in three spacetime dimensions at finite temperature, in the large N limit. We compute several thermal correlators in this theory for both fermionic and bosonic matter separately. The results are computed in the large N ’t Hooft limit but for arbitrary values of the ’t Hooft coupling. Furthermore, we generalize the computations of the four-point function of fundamental scalars in the bosonic theory to finite temperature. As a consistency check, we see that the results obtained here agree with the existing previous results in different limiting cases. Moreover, we check that the results are consistent with the conjectured bosonization duality, providing an additional evidence of it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.