Network anomaly detection system enables to monitor computer network that behaves differently from the network protocol and it is many implemented in various domains. Yet, the problem arises where different application domains have different defining anomalies in their environment. These make a difficulty to choose the best algorithms that suit and fulfill the requirements of certain domains and it is not straightforward. Additionally, the issue of centralization that cause fatal destruction of network system when powerful malicious code injects in the system. Therefore, in this paper we want to conduct experiment using supervised Machine Learning (ML) for network anomaly detection system that low communication cost and network bandwidth minimized by using UNSW-NB15 dataset to compare their performance in term of their accuracy (effective) and processing time (efficient) for a classifier to build a model. Supervised machine learning taking account the important features by labelling it from the datasets. The best machine learning algorithm for network dataset is AODE with a comparable accuracy is 97.26% and time taken approximately 7 seconds. Also, distributed algorithm solves the issue of centralization with the accuracy and processing time still a considerable compared to a centralized algorithm even though a little drop of the accuracy and a bit longer time needed.
This paper offers a summary of the latest studies on healthcare scheduling problems including patients’ admission scheduling problem, nurse scheduling problem, operation room scheduling problem, surgery scheduling problem and other healthcare scheduling problems. The paper provides a comprehensive survey on healthcare scheduling focuses on the recent literature. The development of healthcare scheduling research plays a critical role in optimizing costs and improving the patient flow, providing prompt administration of treatment, and the optimal use of the resources provided and accessible in the hospitals. In the last decades, the healthcare scheduling methods that aim to automate the search for optimal resource management in hospitals by using metaheuristics methods have proliferated. However, the reported results are disintegrated since they solved every specific problem independently, given that there are many versions of problem definition and various data sets available for each of these problems. Therefore, this paper integrates the existing results by performing a comprehensive review and analyzing 190 articles based on four essential components in solving optimization problems: problem definition, formulations, data sets, and methods. This paper summarizes the latest healthcare scheduling problems focusing on patients’ admission scheduling problems, nurse scheduling problems, and operation room scheduling problems considering these are the most common issues found in the literature. Furthermore, this review aims to help researchers to highlight some development from the most recent papers and grasp the new trends for future directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.