Abstract:A new biodesulphurization method has been considered using Pseudomonas aeruginosa supported on polyethylene (PE) for biodesulphurization (BDS) of thiophene as an aromatic sulphur model compound of crude oils. Also the biodegradation of thiophene has been modified in the presence of potassium hexacyanoferrate(III) as a terminal electron acceptor to approach the maximum biodesulphurization efficiency. The obtaining results according to UV-Spectrophotometry at 240 nm, 83.3% of thiophene at the primary concentration of 50 mg/dm 3 , pH = 7, by 0.5 g of biocatalyst in 37°C after 4 h of contact time has been removed. The bacterial cells exhibited a greater and faster biodegradation in the presence of potassium hexacyanoferrate(III) and 94.8% of thiophene has been removed after 3 h of contact time. Kinetic study predicted chemisorption of thiophene on the surface of the biocatalyst, as it followed the pseudo-second-order rate equation. Morphology and surface functional groups of the biocatalyst have been investigated by SEM and FT-IR, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.