Abstract-This letter considers a network comprising a transmitter, which employs random linear network coding to encode a message, a legitimate receiver, which can recover the message if it gathers a sufficient number of linearly independent coded packets, and an eavesdropper. Closed-form expressions for the probability of the eavesdropper intercepting enough coded packets to recover the message are derived. Transmission with and without feedback is studied. Furthermore, an optimization model that minimizes the intercept probability under delay and reliability constraints is presented. Results validate the proposed analysis and quantify the secrecy gain offered by a feedback link from the legitimate receiver.Index Terms-Network coding, fountain coding, physical layer security, secrecy outage probability, intercept probability.
This letter considers a multi-source multi-relay network, in which relay nodes employ a coding scheme based on random linear network coding on source packets and generate coded packets. If a destination node collects enough coded packets, it can recover the packets of all source nodes. The links between source-to-relay nodes and relay-to-destination nodes are modeled as packet erasure channels. Improved bounds on the probability of decoding failure are presented, which are markedly close to simulation results and notably better than previous bounds. Examples demonstrate the tightness and usefulness of the new bounds over the old bounds.Index Terms-Network coding, sparse random matrices, probability of decoding failure, linear dependence.
Opportunistic relaying has the potential to achieve full diversity gain, while random linear network coding (RLNC) can reduce latency and energy consumption. In recent years, there has been a growing interest in the integration of both schemes into wireless networks in order to reap their benefits while taking into account security concerns. This paper considers a multi-relay network, where relay nodes employ RLNC to encode confidential data and transmit coded packets to a destination in the presence of an eavesdropper. Four relay selection protocols are studied covering a range of network capabilities, such as the availability of the eavesdropper's channel state information or the possibility to pair the selected relay with a node that intentionally generates interference. For each case, expressions for the probability that a coded packet will not be recovered by a receiver, which can be either the destination or the eavesdropper, are derived. Based on those expressions, a framework is developed that characterizes the probability of the eavesdropper intercepting a sufficient number of coded packets and partially or fully recovering the confidential data. Simulation results confirm the validity and accuracy of the theoretical framework and unveil the security-reliability trade-offs attained by each RLNC-enabled relay selection protocol.
This paper considers the multiple-access relay channel in a setting where two source nodes transmit packets to a destination node, both directly and via a relay node, over packet erasure channels. Intra-session network coding is used at the source nodes and inter-session network coding is employed at the relay node to combine the recovered source packets of both source nodes. In this work, we investigate the performance of the network-coded system in terms of the probability that the destination node will successfully recover the source packets of the two source nodes. We build our analysis on fundamental probability expressions for random matrices over finite fields and we derive upper bounds on the system performance for the case of systematic and non-systematic network coding. Simulation results show that the upper bounds are very tight and accurately predict the decoding probability at the destination node. Our analysis also exposes the clear benefits of systematic network coding at the source nodes compared to non-systematic transmission.Index Terms-Network coding, fountain coding, multiple access relay channel, decoding probability, block angular matrix.
With the advancement of solid-state devices for lighting, illumination is on the verge of being completely restructured. This revolution comes with numerous advantages and viable opportunities that can transform the world of wireless communications for the better. Solid-state LEDs are rapidly replacing the contemporary incandescent and fluorescent lamps. In addition to their high energy efficiency, LEDs are desirable for their low heat generation, long lifespan, and their capability to switch on and off at an extremely high rate. The ability of switching between different levels of luminous intensity at such a rate has enabled the inception of a new communication technology referred to as visible light communication (VLC). With this technology, the LED lamps are additionally being used for data transmission. This paper provides a tutorial and a survey of VLC in terms of the design, development, and evaluation techniques as well as current challenges and their envisioned solutions. The focus of this paper is mainly directed towards an indoor setup. An overview of VLC, theory of illumination, system receivers, system architecture, and ongoing developments are provided. We further provide some baseline simulation results to give a technical background on the performance of VLC systems. Moreover, we provide the potential of incorporating VLC techniques in the current and upcoming technologies such as fifth-generation (5G), beyond fifth-generation (B5G) wireless communication trends including sixth-generation (6G), and intelligent reflective surfaces (IRSs) among others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.