Based on variational methods and critical point theory, the existence of infinitely many classical solutions for impulsive nonlinear fractional boundary value problems is ensured. Primary 34A08; secondary 34B37; 58E05; 58E30; 26A33
MSC:
In this paper, we study the existence of multiple solutions for a class of impulsive perturbed elastic beam equations of Kirchhoff-type. We give a new criteria for guaranteeing that the impulsive perturbed elastic beam equations of Kirchhoff-type have at least three generalized solutions by using a variational method and a critical points theorem of B. Ricceri.
Abstract. In this work we present new criteria on the existence of three solutions for a class of impulsive nonlinear fractional boundary-value problems depending on two parameters. We use variational methods for smooth functionals defined on reflexive Banach spaces in order to achieve our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.