The nonlinear fluid-structure interaction coupling the Navier-Stokes equations with a dynamic system of elasticity is considered. The coupling takes place on the boundary (interface) via the continuity of the normal component of the Cauchy stress tensor. Due to a mismatch of parabolic and hyperbolic regularity, previous results in the literature dealt with either a regularized version of the model, or with very smooth initial conditions leading to local existence only. In contrast, in the case of small but rapid oscillations of the interface, in [3] the authors established existence of finite energy weak solutions that are defined globally. This is achieved by exploiting new hyperbolic trace regularity results which provide a way to deal with the mismatch of parabolic and hyperbolic regularity. The goal of this paper is to establish regularity of weak solutions, for initial data satisfying the appropriate regularity and compatibility conditions imposed on the interface. It is shown that weak solutions equipped with smooth initial data become classical.
We address a fluid-structure system which consists of the incompressible Navier-Stokes equations and a damped linear wave equation defined on two dynamic domains. The equations are coupled through transmission boundary conditions and additional boundary stabilization effects imposed on the free moving interface separating the two domains. Given sufficiently small initial data, we prove the global-in-time existence of solutions by establishing a key energy inequality which in addition provides exponential decay of solutions.
Our main result is the existence of solutions to the free boundary fluid-structure interaction system. The system consists of a Navier-Stokes equation and a wave equation defined in two different but adjacent domains. The interaction is captured by stress and velocity matching conditions on the free moving boundary lying in between the two domains. We prove the local existence of a solution when the initial velocity of the fluid belongs to H 3 while the velocity of the elastic body is in H 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.