One hotspot of present community ecology is to uncover the mechanisms of community succession. In this study, two popular concepts, niche‐neutrality dynamic balancing and co‐occurrence network analysis, were integrated to investigate the dispersal dynamics of microbial communities in a freshwater river continuum in subtropical China. Results showed that when habitat conditions were mild and appropriate, such as in the clean upstream river, free of heavy pollution or long‐lasting extreme disturbances, stochastic processes could increase species diversities, and organize communities into relatively loosely linked and stable networks with higher modularity and more modules. However, when conditions became degraded under heavy pollution, the influence of neutrality diminished, and niche‐based selection imposed more constraints on communities and guided the assembling processes in certain directions: depleting species richness, strengthening interspecies connections and breaking boundaries of modules. Consequently, communities became more sensitive to fluctuations so as to deal with the harsh conditions efficiently. Another interesting finding was that, both as keystone taxa of communities, module hubs were mostly neutrally distributed generalists with high abundances, and were beneficial to many related operational taxonomic units. In contrast, connectors were less abundant and their distributions were more subjected to the environments. Therefore, connectors were probably responsible for the information transmission between microbial communities and environments, as well as between different modules, and thus could restrict the dispersal of microbes and guide the direction of community assembly.
<p>This review shows regards of the recently experienced concerning the environments of ammonia oxidizing bacteria (AOB), ammonia oxidizing archaea (AOA) microorganisms, and denitrifying microbes. The advancements of molecular biology techniques have encouraged staggeringly to the fast recent developments in the sector. Various methods for implementing so are discussed. The function of AOB, AOA, and denitrifying microorganism composition was investigated through a high throughput of the 16S rRNA amplicon sequencing protocol. There is potential to observe the specific species appearance of these microorganisms in each environment and get to the evaluated relative abundance of several kinds. There is information indicated which the structure of denitrifying and nitrifying group was monitored field to significant fluctuations and the complexes, together in space and in time. More effort is required to enhance and isolate those microorganisms that common of the progressions and to function them through the compound of molecular techniques, biochemical and physiological. However, the investigation with deoxyribonucleic acid (DNA), antibodies, and the polymerase chain reaction (PCR) was preferred mainly to report the composition of chemolithoautotrophic bacteria, surveys of their characteristics in environmental that needed quantification at the transcriptional level is presently not available.</p>
Ammonia-oxidizing communities play important functional roles in the nitrification. However, environmental stresses can significantly affect this process by controlling the abundant communities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities. In this study, we examined the abundance variations of ammonia-oxidizing communities using quantitative polymerase chain reaction (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP) in a typical subtropical river, Luotian County, South Dabie Mountains, China. Clone libraries were conducted to evaluate the community structure and abundance of AOA and AOB in sediments. Results showed that Nitrososphaera sp and Nitrosopumilus sp were the most dominant AOA. The abundance of the AOA and AOB amoA gene ranged from 5.28 × 108 gene copies (g-soil−1) to 2.23 × 108 gene copies (g-soil−1) and 5.45 × 108 gene copies (g-soil−1) to 3.30 × 107 gene copies (g-soil−1), respectively. Five environmental variables, namely, ORP, DO, NO${}_{3}^{-}$, Temp, and NH${}_{4}^{+}$ were played a major function in microbial communities of AOA and AOB in sediments. The T-RFLP profiles of AOA showed that 488 and 116 bp T-RFs were dominated. Overall, the results of this study showed that anthropogenic activities andenvironmental stress in rivers can alter the structure and function of microbes in their variable environment.
Ammonia-oxidizing microorganism communities are abundant and functionally efficacious in nitrification. However, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) groups complicate this process in subtropical streams. This study investigates the abundance of ammonia-oxidizing communities south of the Dabie Mountains, China, using quantitative polymerase chain reaction (qPCR). Clone libraries were utilized to analyze the abundance and microbial structures of AOA and AOB in sediments. Such analysis may provide strong evidence reflecting the links within the environment. The results show that AOB had a lower abundance of copies of the ammonia-oxidizing gene (amoA) than AOA. Interestingly, the AOA and AOB community compositions were correlated with ecological characteristics. The dissolved oxygen (DO) and oxidation-reduction potential (ORP) had significant positive correlations, whereas the phosphorus within the structure had a negative correlation with the abundance of both groups. Our study shows that it might adopt some species related to Nitrosotalea clusters that can resist comparably higher pH (toward pH 6.5). Together, these results imply that the physiological adaptation of microbial guilds to environmental pressures in ammonia-oxidizing archaea might allow them to have a more substantial function of ammonia-oxidizing communities in natural habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.