Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Unexpectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signaling aspartate. The changes are wired together by ultrafast backbone and water movements around the chromophore, channeling them into signal transduction towards the output domains. We suggest that the observed collective changes are important for the phytochrome photoresponse, explaining the earliest steps of how plants, fungi and bacteria sense red light.
We present the structure of a photoactivated animal (6-4) photolyase in its radical pair state, captured by serial crystallography. We observe how a conserved asparigine moves towards the semiquinone FAD...
(6–4) photolyases are flavoproteins that belong to the photolyase/cryptochrome family. Their function is to repair DNA lesions using visible light. Here, crystal structures of Drosophila melanogaster (6–4) photolyase [Dm(6–4)photolyase] at room and cryogenic temperatures are reported. The room-temperature structure was solved to 2.27 Å resolution and was obtained by serial femtosecond crystallography (SFX) using an X-ray free-electron laser. The crystallization and preparation conditions are also reported. The cryogenic structure was solved to 1.79 Å resolution using conventional X-ray crystallography. The structures agree with each other, indicating that the structural information obtained from crystallography at cryogenic temperature also applies at room temperature. Furthermore, UV–Vis absorption spectroscopy confirms that Dm(6–4)photolyase is photoactive in the crystals, giving a green light to time-resolved SFX studies on the protein, which can reveal the structural mechanism of the photoactivated protein in DNA repair.
Resolving the structural
dynamics of bond breaking, bond
formation,
and solvation is required for a deeper understanding of solution-phase
chemical reactions. In this work, we investigate the photodissociation
of triiodide in four solvents using femtosecond time-resolved X-ray
solution scattering following 400 nm photoexcitation. Structural analysis
of the scattering data resolves the solvent-dependent structural evolution
during the bond cleavage, internal rearrangements, solvent-cage escape,
and bond reformation in real time. The nature and structure of the
reaction intermediates during the recombination are determined, elucidating
the full mechanism of photodissociation and recombination on ultrafast
time scales. We resolve the structure of the precursor state for recombination
as a geminate pair. Further, we determine the size of the solvent
cages from the refined structures of the radical pair. The observed
structural dynamics present a comprehensive picture of the solvent
influence on structure and dynamics of dissociation reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.