Microelectrodes of neural stimulation utilize fine wires for electrical connections to driving electronics. Breakage of these wires and the neural tissue response due to their tethering forces are major problems encountered with long term implantation of microelectrodes. The lifetime of an implant for neural stimulation can be substantially improved if the wire interconnects are eliminated. Thus, we proposed a floating light-activated micro electrical stimulator (FLAMES) for wireless neural stimulation. In this paradigm, a laser beam at near infrared (NIR) wavelengths will be used as a means of energy transfer to the device. In this study, microstimulators of various sizes were fabricated, with two cascaded GaAs p-i-n photodiodes, and tested in the rat spinal cord. A train of NIR pulses (0.2 ms, 50 Hz) was sent through the tissue to wirelessly activate the devices and generate the stimulus current. The forces elicited by intraspinal stimulation were measured from the ipsilateral forelimb with a force transducer. The largest forces were around 1.08N, a significant level of force for the rat forelimb motor function. These in vivo tests suggest that the FLAMES can be used for intraspinal microstimulation even for the deepest implant locations in the rat spinal cord. The power required to generate a threshold arm movement was investigated as the laser source was moved away from the microstimulator. The results indicate that the photon density does not decrease substantially for horizontal displacements of the source that are in the same order as the beam radius. This gives confidence that the stimulation threshold may not be very sensitive to small displacement of the spinal cord relative to the spine-mounted optical power source.
Neural microstimulation is becoming a powerful tool for the restoration of impaired functions in the central nervous system. Microelectrode arrays with fine wire interconnects have traditionally been used in the development of these neural prosthetic devices. However, these interconnects are usually the most vulnerable part of the neuroprosthetic implant that can eventually cause the device to fail. In this paper, we investigate the feasibility of floating-light-activated microelectrical stimulators (FLAMES) for wireless neural stimulation. A computer model was developed to simulate the micro stimulators for typical requirements of neural activation in the human white and gray matters. First, the photon densities due to a circular laser beam were simulated in the neural tissue at near-infrared (NIR) wavelengths. Temperature elevation in the tissue was calculated and the laser power was retrospectively adjusted to 325 and 250 mW/cm2 in the gray and white matters, respectively, to limit ΔT to 0.5 °C. Total device area of the FLAMES increased with all parameters considered but decreased with the output voltage. We conclude that the number of series photodiodes in the device can be used as a free parameter to minimize the device size. The results suggest that floating, optically activated stimulators are feasible at submillimeter sizes for the activation of the brain cortex or the spinal cord.
Abstract. Near-infrared (NIR) lasers find applications in neuro-medicine both for diagnostic and treatment purposes. Penetration depth and profile into neural tissue are critical parameters to be considered in these applications. Published data on the optical properties of rodent neural tissue are rare, despite the frequent use of rats as an animal model. The aim of this study was to measure the light intensity profile inside the rat brain using a direct method, while the medium is being illuminated by an NIR laser beam, and compare the results with in vitro measurements of transmittance in the rat brain slices. The intensity profile along the vertical axis had an exponential decline with multiple regions that could be approximated with different coefficients. The Monte Carlo method that was used to simulate light-tissue interactions and predict the scattering coefficient of brain tissue from the measurements suggested that more scattering occurred in deeper layers of the cortex. A single scattering coefficient of 125 cm −1 was estimated for cortical layers from 300 to 1500 μm and a gradually increasing value from 125 to 370 cm −1 for depths of 1500 to 3000 μm. The deviations of in vivo results from the in vitro transmittance measurements, as well as the postmortem in vivo results from the alive measurements were significant.
Near infrared (NIR) light energy has been used in medical applications both for diagnostic and treatment purposes. A priory knowledge of optical tissue properties is necessary in these applications; not only of human but also in animals for testing of devices. However, published data on the optical properties of neural tissue in rodents are rare. The aim of this study was to measure the penetration depth of light into the rat peripheral nerve and brain cortex at NIR wavelengths. Penetration depth was calculated from measurements of transmitted light for various thicknesses of the neural tissue. We found the penetration depth in the rat sciatic nerve to be 0.35 +/- 0.023 mm and in the white matter 0.35 +/- 0.026 mm. The penetration depth of the gray matter was 0.41+/-0.029 mm. Compared to the data reported in literature for the human brain, the rat peripheral and the brain cortex attenuate the NIR light much more strongly.
Chronic tissue response to microelectrode implants stands in the way as a major challenge to development of many neural prosthetic applications. The long term tissue response is mostly due to the movement of interconnects and the resulting mechanical stress between the electrode and the surrounding neural tissue. Remotely activated floating micro-stimulators are one possible method of eliminating the interconnects. As a method of energy transfer to the micro-stimulator, we proposed to use a laser beam at near infrared (NIR) wavelengths. FLAMES of various sizes were fabricated with integrated silicon PIN photodiodes. Sizes varied from 120 (Width) × 300 (Length) × 100 (Height) μm to 200 × 500 × 100μm. Devices were bench tested using 850nm excitation from a Ti:Sapphire laser. To test this method, the voltage field of the FLAMES was experimentally tested in saline solution pulsed with a NIR laser beam. The voltage generated is around 196mV in peak at the cathodic contact as a response to a single pulse. When a train of laser pulses was applied at 100Hz, the peak voltage at the cathodic contact remained around 141mV suggesting the feasibility of this approach for applications with pulse frequencies up to 100Hz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.