This search deals with the empirically obtained conditions for the fusion splicing with photonic crystal fibers (ESM-12) and (SMF-28) by controlling the arc-power and the arc-time of conventional electric-arc fusion splicer (FSM-60S). The development of microstructure fiber has been limited by the fact that these fibers are generally difficult, and in some cases even impossible, to fusion splice using conventional technologies. For this reason, fusion splicing microstructure fiber is an important area of research that is likely to impact the future direction of optical fiber technology . there are many kinds of fusion splicing techniques, enabling connection between two optical fibers, such as an electric arc and a CO 2 laser .It is likely that electric arc fusion splicing technique has been widely applied and even better established than the others, especially on the standard single mode fibers (SMFs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.