Constructing appropriate unitary matrix operators for new quantum algorithms and finding the minimum cost gate sequences for the implementation of these unitary operators is of fundamental importance in the field of quantum information and quantum computation. Evolution of quantum circuits faces two major challenges: complex and huge search space and the high costs of simulating quantum circuits on classical computers. Here, we use the group leaders optimization algorithm to decompose a given unitary matrix into a properminimum cost quantum gate sequence. We test the method on the known decompositions of Toffoli gate, the amplification step of the Grover search algorithm, the quantum Fourier transform, and the sender part of the quantum teleportation. Using this procedure, we present the circuit designs for the simulation of the unitary propagators of the Hamiltonians for the hydrogen and the water molecules. The approach is general and can be applied to generate the sequence of quantum gates for larger molecular systems.
Recently, it is shown that quantum computers can be used for obtaining certain information about the solution of a linear system A x = b exponentially faster than what is possible with classical computation. Here we first review some key aspects of the algorithm from the standpoint of finding its efficient quantum circuit implementation using only elementary quantum operations, which is important for determining the potential usefulness of the algorithm in practical settings. Then we present a small-scale quantum circuit that solves a 2 × 2 linear system. The quantum circuit uses only 4 qubits, implying a tempting possibility for experimental realization. Furthermore, the circuit is numerically simulated and its performance under different circuit parameter settings is demonstrated.
Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix-which can be non-unitary-in an efficient way. We also give both the classical and quantum complexity analysis for these circuits and show that the circuits require a few classical computations. For the electronic structure simulation on a quantum computer, one has to perform the following steps: prepare the initial wave function of the system; present the evolution operator U = e(-iHt) for a given atomic and molecular Hamiltonian H in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigenvalues. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum gate arrays. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.
We compare recently proposed methods to compute the electronic state energies of the water molecule on a quantum computer. The methods include the phase estimation algorithm based on Trotter decomposition, the phase estimation algorithm based on the direct implementation of the Hamiltonian, direct measurement based on the implementation of the Hamiltonian and a specific variational quantum eigensolver, Pairwise VQE. After deriving the Hamiltonian using STO-3G basis, we first explain how each method works and then compare the simulation results in terms of gate complexity and the number of measurements for the ground state of the water molecule with different O-H bond lengths. Moreover, we present the analytical analyses of the error and the gate-complexity for each method. While the required number of qubits for each method is almost the same, the number of gates and the error vary a lot. In conclusion, among methods based on the phase estimation algorithm, the second order direct method provides the most efficient circuit implementations in terms of the gate complexity. With large scale quantum computation, the second order direct method seems to be better for large molecule systems. Moreover, Pairewise VQE serves the most practical method for near-term applications on the current available quantum computers. Finally the possibility of extending the calculation to excited states and resonances is discussed.
Principal component analysis is a multivariate statistical method frequently used in science and engineering to reduce the dimension of a problem or extract the most significant features from a dataset. In this paper, using a similar notion to the quantum counting, we show how to apply the amplitude amplification together with the phase estimation algorithm to an operator in order to procure the eigenvectors of the operator associated to the eigenvalues defined in the range [a, b], where a and b are real and 0 ≤ a ≤ b ≤ 1. This makes possible to obtain a combination of the eigenvectors associated to the largest eigenvalues and so can be used to do principal component analysis on quantum computers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.