Abstract-With the recent developments of high-mobility wireless communication systems, e.g., high-speed train (HST) and vehicle-to-vehicle (V2V) communication systems, the ability of conventional stationary channel models to mimic the underlying channel characteristics has widely been challenged. Measurements have demonstrated that the current standardized channel models, like IMT-Advanced (IMT-A) and WINNER II channel models, offer stationary intervals that are noticeably longer than those in measured HST channels. In this paper, we propose a non-stationary channel model with time-varying parameters including the number of clusters, the powers and the delays of the clusters, the angles of departure (AoDs), and the angles of arrival (AoAs). Based on the proposed non-stationary IMT-A channel model, important statistical properties, i.e., the local spatial crosscorrelation function (CCF) and local temporal autocorrelation function (ACF) are derived and analyzed. Simulation results demonstrate that the statistical properties vary with time due to the non-stationarity of the proposed channel model. An excellent agreement is achieved between the stationary interval of the developed non-stationary IMT-A channel model and that of relevant HST measurement data, demonstrating the utility of the proposed channel model.
Abstract-This paper proposes a generic non-stationary wideband geometry-based stochastic model (GBSM) for multipleinput multiple-output (MIMO) high-speed train (HST) channels. The proposed generic model can be applied on the three most common HST scenarios, i.e., open space, viaduct, and cutting scenarios. A good agreement between the statistical properties of the proposed generic model and those of relevant measurement data from the aforementioned scenarios demonstrates the utility of the proposed channel model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.