Development of electrical power systems led to search for a new mathematical methods to find the values of PID (Proportional-Integral-Derivative) controller. The goal of the paper is to improve the performance of the overall system, through improved the frequency deviation and the voltage deviation characteristics using PID controller, so in this paper are proposed three methods of artificial intelligence techniques for designing the optimal values of PID controller of Load-Frequency-Control (LFC) and Automatic-Voltage-Regulator (AVR), the first is the Firefly Algorithm (FA), the second is the Genetic Algorithm (GA) and the third is the Particle Swarm Optimization (PSO), in addition to these three methods use the conventional (Ziegler–Nichols, Z-N). The FA, GA and PSO are used to obtain the optimal parameters of PID controller based on minimized different various indices as a fitness function, these fitness functions namely Integral-Time-Absolute-Error (ITAE) and Integral-Time-Square-Error (ITSE). Comparison between the results obtained show that FA has better performance to control of frequency deviation and terminal voltage than GA and PSO, so the results observed the FA is more effectual and reliable to determine the optimal values of PID controller.
For Induction motor is a system that works at their speed, nevertheless there are applications at which the speed operations are needed. The control of range of speed of induction motor techniques is available. The robust control is used with induction motor and the performance of the system with the controller will be improved. The mathematical model to the controller, which were coded in MATLAB. The modeling and controller will be shown by the conditions of robustness of be less than one.
The load forecasting consider as part important in power system operation. The exact prediction for power demand is important for planning how much need extra power generation to cover extra load to keep without happen shutdown. Neural networks stay frequently designed for modeling dynamic processes. The Multi-Layer Perceptron (MLP) with Radial Basis Functions (RBF) network is static approximations used fewer frequently in the discrete-time domain. In this paper proposed predict method for daily peak load by Elman Neural Network (ENN) with using data power demand for 2 years collected from National Control Center (NCC) and comparing the result. The result show the proposal is evaluated and followed the power demand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.