Decellularized bovine and porcine tissues have been used as scaffolds to support tissue regeneration but inherit religious restrictions and risks of disease transmission to humans. Decellularized marine tissues are seen as attractive alternatives due to their similarity to mammalian tissues, reduced biological risks, and less religious restrictions. The aim of this study was to derive an acellular scaffold from the skin of tilapia and evaluate its suitability as a tissue engineering scaffold. Tilapia skin was treated with a series of chemical and enzymatic treatments to remove cellular materials. The decellularized tilapia skin (DTS) was then characterized and evaluated in vitro and in vivo to assess its biological compatibility. The results indicated that the decellularization process removed 99.6% of the DNA content from tilapia skin. The resultant DTS was shown to possess a high denaturation temperature of 68.1 ± 1.0°C and a high Young's modulus of 56.2 ± 14.4 MPa. The properties of DTS were also compared against those of crosslinked electrospun tilapia collagen membrane, another form of tilapia‐derived collagen scaffold. In vitro studies revealed that both DTS and crosslinked electrospun tilapia collagen promoted cellular metabolic activity, differentiation, and mineralization of murine preosteogenic MC3T3‐E1 cells. The rat calvarial defect model was used to evaluate the in vivo performance of the scaffolds, and both scaffolds did not induce hyperacute rejections. Furthermore, they enhanced bone regeneration in the critical defect compared with the sham control. This study suggests that tilapia‐derived scaffolds have great potential in tissue engineering applications.
The steep increasing incidence of bone diseases and fractures provides a commanding impetus and growing demands for bone tissue engineering research. Pulsed electromagnetic fields (PEMFs) have been documented to promote bone fracture healing in nonunions and to enhance the maturation of osteoblastic cell, which is the key element in bone tissues. However, the optimal parameters for PEMF stimulation are still being explored. In this study, we investigated the effects of PEMF treatment on the proliferation, differentiation, and mineralization of osteoblast precursor cells MC3T3-E1 to explore the cell growth profile under different PEMF exposure durations (15, 30, and 60 min daily) with a magnetic field strength of 0.6 mT, at a frequency of 50 Hz, and cultured in media with or without osteogenic supplements for 28 days. Cell viability and metabolic activity were accessed by confocal microscopy, and alamarBlue time-course measurements and results indicated that there were no adverse effects under designated PEMF condition. After 7 days of PEMF exposure, in comparison with negative controls, cell numbers increased when exposed to PEMF in culture medium and were independent of osteogenic supplements. However, PEMF might not have significant impact on cellular mineralization as observed from calcium deposition analysis, even though osteogenic gene expression was upregulated for cells with PEMF exposure. Von Kossa and Alizarin Red staining indicated that extracellular matrix mineralization occurred at day 28 with osteogenic supplements only, and no significant differences were found among those samples with different PEMF treatment durations. In summary, our results suggested that PEMF stimulation for as short as 15 min could improve cell proliferation but not mineralization in vitro. Thus, this study highlights the importance of choosing appropriate PEMF parameters to achieve the desired effect on target cells. The optimization of PEMFs will enhance the efficiency of its usage as a clinical, adjuvant therapeutic treatment for bone defect regeneration.
This in vitro study shows that mannose-related proteoglycans (proteomannans) are involved in the process of H. pylori biofilm formation while the presence of upregulated NapA in the biofilm implies the potency to increase adhesiveness of H. pylori biofilm. Being a complex matrix of proteins and carbohydrates, which are probably interdependent, the H. pylori biofilm could possibly offer a protective haven for the survival of this gastric bacterial pathogen in the extragastric environments.
Collagen has been used extensively in tissue engineering applications. However, the source of collagen has been primarily bovine and porcine. In view of the potential risk of zoonotic diseases and religious constraints associated with bovine and porcine collagen, fish collagen was examined as an alternative. The aim of this study is to use tilapia fish collagen to develop a cross-linked electrospun membrane to be used as a barrier membrane in guided bone regeneration. As there is limited data available on the cytotoxicity and immunogenicity of cross-linked tilapia collagen, in vitro and in vivo tests were performed to evaluate this in comparison to the commercially available Bio-Gide membrane. In this study, collagen was extracted and purified from tilapia skin and electrospun into a nanofibrous membrane. The resultant membrane was cross-linked to obtain a cross-linked electrospun tilapia collagen (CETC) membrane, which was characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), degradation studies, cytotoxicity studies, and cell proliferation studies. The membranes were also implanted subcutaneously in rats and the host immune responses were examined. The DSC data showed that cross-linking increased the denaturation temperature of tilapia collagen to 58.3°C ± 1.4°C. The in vitro tests showed that CETC exhibited no cytotoxicity toward murine fibroblast L929 cells, and culture of murine preosteoblast MC3T3-E1 cells demonstrated better proliferation on CETC as compared to Bio-Gide. When implanted in rats, CETC caused a higher production of interleukin IL-6 at early time points as compared to Bio-Gide, but there was no long-term inflammatory responses after the acute inflammation phase. This finding was supported with histology data, which clearly illustrated that CETC has a decreased inflammatory response comparable to the benchmark control group. In all, this study demonstrated the viability for the use of CETC as a tissue engineering scaffold and provides an insight on the in vivo immune responses toward xenogenic collagen scaffolds.
Traditional cancer treatments, such as chemotherapy and radiation therapy continue to have limited efficacy due to tumor hypoxia. While bacterial cancer therapy has the potential to overcome this problem, it comes with the risk of toxicity and infection. To circumvent these issues, this paper investigates the anti-tumor effects of non-viable bacterial derivatives of Clostridium sporogenes. These non-viable derivatives are heat-inactivated C. sporogenes bacteria (IB) and the secreted bacterial proteins in culture media, known as conditioned media (CM). In this project, the effects of IB and CM on CT26 and HCT116 colorectal cancer cells were examined on a 2-Dimensional (2D) and 3-Dimensional (3D) platform. IB significantly inhibited cell proliferation of CT26 to 6.3% of the control in 72 hours for the 2D monolayer culture. In the 3D spheroid culture, cell proliferation of HCT116 spheroids notably dropped to 26.2%. Similarly the CM also remarkably reduced the cell-proliferation of the CT26 cells to 2.4% and 20% in the 2D and 3D models, respectively. Interestingly the effect of boiled conditioned media (BCM) on the cells in the 3D model was less inhibitory than that of CM. Thus, the inhibitive effect of inactivated C. sporogenes and its conditioned media on colorectal cancer cells is established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.