This paper illustrates how practical application of nanoparticles (SiO2) as working fluid to stimulate solar flat plate collector efficiency with heat transfer modification properties. A numerical study of nanofluids laminar forced convection, permanent and stationary (SiO2), is conducted in a solar flat plate collector. The effectiveness of these nanofluids are compared to conventional working fluid (water), wherein the dynamic and thermal properties are evaluated for four volume concentrations of nanoparticles (1%, 3%, 5% and 10%), and this done for Reynolds number from 25 to 900. Results from the application of those nonfluids are obtained versus average temperature; pressure drop coefficient and Nusselt number are discussed later in this paper. Finally, we concluded that heat transfer increases with increasing both nanoparticles concentration and Reynolds number.
This paper illustrates how practical application of nanofluids as working fluid to enhance solar flat plate collector efficiency. A numerical investigation of laminar convective heat transfer flow throw a solar collector is conducted, by using CuO-water nanofluids. The effectiveness of these nanofluids is compared to conventional working fluid (water), wherein Reynolds number and nanoparticle volume concentration in the ranges of 25-900 and 0-10 % respectively. The effects of Reynolds number and nanoparticles concentration on the skin-friction and heat transfer coefficients are presented and discussed later in this paper. Results show that the heat transfer increases with increasing both nanoparticles concentration and Reynolds number, where nanofluid CuO-water gives best improvement in terms of heat transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.