The feedback collection and analysis has remained an important subject matter since long. The traditional techniques for student feedback analysis are based on questionnaire-based data collection and analysis. However, the student expresses their feedback opinions on online social media sites, which need to be analyzed. This study aims at the development of fuzzy-based sentiment analysis system for analyzing student feedback and satisfaction by assigning proper sentiment score to opinion words and polarity shifters present in the input reviews. Our technique computes the sentiment score of student feedback reviews and then applies fuzzy-logic module to analyze and quantify student’s satisfaction at the fine-grained level. The experimental results reveal that the proposed work has outperformed the baseline studies as well as state-of-the-art machine learning classifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.