This paper is centred on a binary classification problem in which it is desired to assign a new object with multivariate features to one of two distinct populations as based on historical sets of samples from two populations. A linear discriminant analysis framework has been proposed, called the minimised sum of deviations by proportion (MSDP) to model the binary classification problem. In the MSDP formulation, the sum of the proportion of exterior deviations is minimised subject to the group separation constraints, the normalisation constraint, the upper bound constraints on proportions of exterior deviations and the sign unrestriction vis-à-vis the non-negativity constraints. The two-phase method in linear programming is adopted as a solution technique to generate the discriminant function. The decision rule on group-membership prediction is constructed using the apparent error rate. The performance of the MSDP has been compared with some existing linear discriminant models using a previously published dataset on road casualties. The MSDP model was more promising and well suited for the imbalanced dataset on road casualties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.