Plants often face incompatible growing environments like drought, salinity, cold, frost, and elevated temperatures that affect plant growth and development leading to low yield and, in worse circumstances, plant death. The arsenal of versatile compounds for plant consumption and structure is called metabolites, which allows them to develop strategies to stop enemies, fight pathogens, replace their competitors and go beyond environmental restraints. These elements are formed under particular abiotic stresses like flooding, heat, drought, cold, etc., and biotic stress such as a pathogenic attack, thus associated with survival strategy of plants. Stress responses of plants are vigorous and include multifaceted crosstalk between different levels of regulation, including regulation of metabolism and expression of genes for morphological and physiological adaptation. To date, many of these compounds and their biosynthetic pathways have been found in the plant kingdom. Metabolites like amino acids, phenolics, hormones, polyamines, compatible solutes, antioxidants, pathogen related proteins (PR proteins), etc. are crucial for growth, stress tolerance, and plant defense. This review focuses on promising metabolites involved in stress tolerance under severe conditions and events signaling the mediation of stress-induced metabolic changes are presented.
Plant tissue culture technique employed for the identification and isolation of bioactive phytocompounds has numerous industrial applications. It provides potential benefits for different industries which include food, pharmaceutical and cosmetics. Various agronomic crops i.e., cereals, fruits, vegetables, ornamental plants and forest trees are currently being used for in vitro propagation. Plant tissue culture coupled with biotechnological approaches leads towards sustainable agricultural development providing solutions to major food security issues. Plants are the rich source of phytochemicals with medicinal properties rendering them useful for the industrial production of pharmaceuticals and nutraceuticals. Furthermore, there are numerous plant compounds with application in the cosmetics industry. In addition to having moisturizing, anti‐ageing, anti‐wrinkle effects; plant-derived compounds also possess pharmacological properties such as antiviral, antimicrobial, antifungal, anticancer, antioxidant, anti-inflammatory, and anti-allergy characteristics. The in vitro propagation of industrially significant flora is gaining attention because of its several advantages over conventional plant propagation methods. One of the major advantages of this technique is the quick availability of food throughout the year, irrespective of the growing season, thus opening new opportunities to the producers and farmers. The sterile or endangered flora can also be conserved by plant micro propagation methods. Hence, plant tissue culture is an extremely efficient and cost-effective technique for biosynthetic studies and bio-production, biotransformation, or bioconversion of plant-derived compounds. However, there are certain limitations of in-vitro plant regeneration system including difficulties with continuous operation, product removal, and aseptic conditions. For sustainable industrial applications of in-vitro regenerated plants on a large scale, these constraints need to be addressed in future studies.
Xanthomonas citri subsp. citri, a causative agent of the citrus canker (CC) disease, belongs to one of the essential groups of the bacterial phytopathogen family, Xanthomonadaceae. It has been a potential threat to the globally significant citrus fruit crop, which has remained under investigation for disease management and epidemiology since the 1980s. In Pakistan, the average yield of citrus is 11 t/ha, which is lower than other countries, including China, Brazil, and India, having average productions of 27, 26, and 22 tons/hectare, respectively. Citrus canker is one of the most devastating diseases, posing a significant threat to crop yield and fruit quality. To date, five distinct types (or forms) of the citrus canker have been recognized; the Asiatic (Canker A) form is most destructive and affects most citrus cultivars. Severe infection outcomes include dieback, defoliation, severely blemished fruit, premature fruit drop, and reduced fruit quality. The infection increases under humid, warm, cloudy climate, wind, and heavy rainfall. The analysis of plasmid and chromosomal DNA of X. citri subsp. citri depicted an evolutionary relationship among pathovars of Xanthomonas. The extensive study on the genome of X. citri subsp. citri has contributed to the current knowledge of plant host recognition of pathogens, host specificities, dissemination, and propagation. Regulatory programs, i.e., quarantine or exclusion, continued to be practiced, prohibiting infected citrus plant material into the existing stock. Other measures include removal of inoculums sources, resistant hosts, protective copper-containing sprays, and windbreak systems. In this review, we explored the latest trends in the areas of epidemiology, pathogenome, detection, host–pathogen interaction, biofilm formation, and management of X. citri subsp. citri.
R ice (Oryza sativa L.) is one of the most important and widely cultivated cereal crops all over the world (Salim et al., 2003). The tropical and subtropical areas of the world are the major rice producer while 90% of the total rice production is occurring in Asian countries (Ezuka and Kaku, 2000). Heavy losses due to rice pests and diseases are the major constraints in world rice production. This important crop badly suffers from more than forty different microbial disease and disorders. Among them, bacterial leaf blight of rice (BLB) caused by Xanthomonas oryzae pv. oryzae (Swings et al., 1990) is a serious threat for irrigated, deep water, rainfed, temperate, tropical and subtropical rice growing areas of the world (Mew, 1987). This destructive disease has now become a serious pathosystem to rice crop especially in South East Abstract | Bacterial leaf blight is a devastating disease of paddy rice crop throughout the rice growing countries. Several commonly available plant decoctions were investigated as the bioactive eco-friendly compounds, and as the possible alternatives to hazardous chemicals for the control of BLB of rice. Aqueous extracts of fifteen different plant parts either individually or in combination were tested at various concentrations under in vitro conditions by poison food and disk diffusion techniques while best effective seven were trialed in glass house and field experiments to determine their efficacy against Xanthomonas oryzae pv. oryzae. In vitro and in vivo studies under different conditions showed significant response of Mentha piperita, Azadirachta indica and Aloe vera either tested individually or in combination of two or more than two decoctions against the bacterium in question. When used individually, M. piperita demonstrated best in vitro, field and glass house experiments followed by the A. indica which also proved its efficacy against the pathogen. The combination of M. piperita, A. indica and C. limon was superior in reducing the BLB of rice. Besides this, all treatments showed significant effect on the agronomic traits of rice plants. The reduction of disease in all the trials along with healthy crop stand in glass house and field indicated that these decoctions might play an important role in biological management strategies for the control of BLB of rice. The present research may provide an avenue for the formulation of new bactericides for future uses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.