The aspiration of this research is to explore the impact of non-similar modeling for mixed convection in magnetized second-grade nanofluid flow. The flow is initiated by the stretching of a sheet at an exponential rate in the upward vertical direction. The buoyancy effects in terms of temperature and concentration differences are inserted in the
x
-momentum equation. The aspects of heat and mass transfer are studied using dimensionless thermophoresis, Schmidt and Brownian motion parameters. The governing coupled partial differential system (PDEs) is remodeled into coupled non-similar nonlinear PDEs by introducing non-similar transformations. The numerical analysis for the dimensionless non-similar partial differential system is performed using a local non-similarity method via bvp4c. Finally, the quantitative effects of emerging dimensionless quantities on the non-dimensional velocity, temperature and mass concentration in the boundary layer are conferred graphically, and inferences are drawn that important quantities of interest are substantially affected by these parameters. It is concluded that non-similar modeling, in contrast to similar models, is more general and more accurate in convection studies in the presence of buoyancy effects for second-grade non-Newtonian fluids.
Analysis of a gravity-induced film flow of a fluid containing both nanoparticles and gyrotactic microorganisms along a convectively heated vertical surface is presented. The Buongiorno model is applied. Two kinds of boundary conditions, the passive and the active boundary conditions, are considered to investigate this film flow phenomenon. Through a set of similarity variables, the ordinary differential equations that describe the conservation of the momentum, the thermal energy, the nanoparticles, and the microorganisms are derived and then solved numerically by an efficient finite difference technique. The effects of various physical parameters on the profiles of momentum, thermal energy, nanoparticles, microorganisms, local skin friction, local Nusselt number, local wall mass flux, and local wall motile microorganisms flux are investigated. It is expected that the passively controlled nanofluid model can be much more easily achieved and applied in real circumstances than the actively controlled model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.