We study the problem of finding and monitoring fixed-size subgraphs in a continually changing large-scale graph. We present the first approach that (i) performs worst-case optimal computation and communication, (ii) maintains a total memory footprint linear in the number of input edges, and (iii) scales down per-worker computation, communication, and memory requirements linearly as the number of workers increases, even on adversarially skewed inputs.Our approach is based on worst-case optimal join algorithms, recast as a data-parallel dataflow computation. We describe the general algorithm and modifications that make it robust to skewed data, prove theoretical bounds on its resource requirements in the massively parallel computing model, and implement and evaluate it on graphs containing as many as 64 billion edges. The underlying algorithm and ideas generalize from finding and monitoring subgraphs to the more general problem of computing and maintaining relational equi-joins over dynamic relations. Edge-at-a-time ApproachesPerhaps the most common approach to finding instances of a query subgraph is to treat it as a relational query, and to execute a sequence of binary joins to determine the result. For example,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.