In current trends the logos are playing a vital role in industrial and all commercial applications. Fundamentally the logo is defined as it's a graphic entity which contains colors textures, shapes and text etc., which is organized in some special visible format. But unfortunately it is very difficult thing to save their brand logos from duplicates. In practical world there are several systems available for logo reorganization and detection with different kinds of requirements. Two dimensional global descriptors are used for logo matching and reorganization. The concept of Shape descriptors based on Shape context and the global descriptors are based on the logo contours. There is an algorithm which is implemented for logo detection is based on partial spatial context and spatial spectral saliency (SSS). The SSS is able to keep away from the confusion effect of background and also speed up the process of logo detection. All such methods are useful only when the logo is visible completely without noise and not subjected to change. We contribute, through this paper, to the design of a novel variation framework able to match and recognize multiple instances of multiple reference logos in image archives. Reference logos and test images are seen as constellations of local features (interest points, regions, etc.) and matched by minimizing an energy function mixing: 1) a fidelity term that measures the quality of feature matching, 2) a neighborhood criterion that captures feature co-occurrence geometry, and 3) a regularization term that controls the smoothness of the matching solution. We also introduce a detection/recognition procedure and study its theoretical consistency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.