The mode of action human relevance (MOA/HR) framework increases transparency in systematically considering data on MOA for end (adverse) effects and their relevance to humans. This framework continues to evolve as experience increases in its application. Though the MOA/HR framework is not designed to address the question of “how much information is enough” to support a hypothesized MOA in animals or its relevance to humans, its organizing construct has potential value in considering relative weight of evidence (WOE) among different cases and hypothesized MOA(s). This context is explored based on MOA analyses in published assessments to illustrate the relative extent of supporting data and their implications for dose–response analysis and involved comparisons for chemical assessments on trichloropropane, and carbon tetrachloride with several hypothesized MOA(s) for cancer. The WOE for each hypothesized MOA was summarized in narrative tables based on comparison and contrast of the extent and nature of the supporting database versus potentially inconsistent or missing information. The comparison was based on evolved Bradford Hill considerations rank ordered to reflect their relative contribution to WOE determinations of MOA taking into account increasing experience in their application internationally. This clarification of considerations for WOE determinations as a basis for comparative analysis is anticipated to contribute to increasing consistency in the application of MOA/HR analysis and potentially, transparency in separating science judgment from public policy considerations in regulatory risk assessment. Copyright © 2014. The Authors. Journal of Applied Toxicology Published by John Wiley & Sons Ltd.The potential value of the mode of action (MOA)/human relevance (species concordance) framework in considering relative weight of evidence (WOE) amongst different cases and hypothesized MOA(s) is explored based on the content of several published assessments. The comparison is based on evolved Bradford Hill considerations rank ordered to reflect their relative contribution to WOE determinations for MOA based on experience internationally.
The RISK21 integrated evaluation strategy is a problem formulation-based exposure-driven risk assessment roadmap that takes advantage of existing information to graphically represent the intersection of exposure and toxicity data on a highly visual matrix. This paper describes in detail the process for using the roadmap and matrix. The purpose of this methodology is to optimize the use of prior information and testing resources (animals, time, facilities, and personnel) to efficiently and transparently reach a risk and/or safety determination. Based on the particular problem, exposure and toxicity data should have sufficient precision to make such a decision. Estimates of exposure and toxicity, bounded by variability and/or uncertainty, are plotted on the X-and Y-axes of the RISK21 matrix, respectively. The resulting intersection is a highly visual representation of estimated risk. Decisions can then be made to increase precision in the exposure or toxicity estimates or declare that the available information is sufficient. RISK21 represents a step forward in the goal to introduce new methodologies into 21st century risk assessment. Indeed, because of its transparent and visual process, RISK21 has the potential to widen the scope of risk communication beyond those with technical expertise.
The Health and Environmental Sciences Institute (HESI)-coordinated Risk Assessment in the 21st Century (RISK21) project was initiated to develop a scientific, transparent, and efficient approach to the evolving world of human health risk assessment, and involved over 120 participants from 12 countries, 15 government institutions, 20 universities, 2 non-governmental organizations, and 12 corporations. This paper provides a brief overview of the tiered RISK21 framework called the roadmap and risk visualization matrix, and articulates the core principles derived by RISK21 participants that guided its development. Subsequent papers describe the roadmap and matrix in greater detail. RISK21 principles include focusing on problem formulation, utilizing existing information, starting with exposure assessment (rather than toxicity), and using a tiered process for data development. Bringing estimates of exposure and toxicity together on a two-dimensional matrix provides a clear rendition of human safety and risk. The value of the roadmap is its capacity to chronicle the stepwise acquisition of scientific information and display it in a clear and concise fashion. Furthermore, the tiered approach and transparent display of information will contribute to greater efficiencies by calling for data only as needed (enough precision to make a decision), thus conserving animals and other resources.
The ILSI Health and Environmental Sciences Institute (HESI) has developed a framework to support a transition in the way in which information for chemical risk assessment is obtained and used (RISK21). The approach is based on detailed problem formulation, where exposure drives the data acquisition process in order to enable informed decision-making on human health safety as soon as sufficient evidence is available. Information is evaluated in a transparent and consistent way with the aim of optimizing available resources. In the context of risk assessment, cumulative risk assessment (CRA) poses additional problems and questions that can be addressed using the RISK21 approach. The focus in CRA to date has generally been on chemicals that have common mechanisms of action. Recently, concern has also been expressed about chemicals acting on multiple pathways that lead to a common health outcome, and non-chemical other conditions (non-chemical stressors) that can lead to or modify a common outcome. Acknowledging that CRAs, as described above, are more conceptually, methodologically and computationally complex than traditional single-stressor risk assessments, RISK21 further developed the framework for implementation of workable processes and procedures for conducting assessments of combined effects from exposure to multiple chemicals and non-chemical stressors. As part of the problem formulation process, this evidence-based framework allows the identification of the circumstances in which it is appropriate to conduct a CRA for a group of compounds. A tiered approach is then proposed, where additional chemical stressors and/or non-chemical modulating factors (ModFs) are considered sequentially. Criteria are provided to facilitate the decision on whether or not to include ModFs in the formal quantitative assessment, with the intention to help focus the use of available resources to have the greatest potential to protect public health.
Altered DNA methylation contributes to tumorigenesis by affecting gene expression in a heritable fashion. Phenobarbital (PB) is a nongenotoxic rodent carcinogen which induces global hypomethylation and regions of hypermethylation in mouse liver. Liver tumor-sensitive (B6C3F1) and -resistant (C57BL/6) male mice were administered 0.05% (wt/wt) PB in drinking water for 2 or 4 weeks, and a 2-week recovery was included following each dosing period. DNA was isolated from liver (target) and kidney (nontarget) tissues. The methylation status of GC-rich regions of DNA was assessed via methylation-sensitive restriction digestion, arbitrarily primedpolymerase chain reaction, and capillary electrophoretic separation of products. PB-induced regions of altered methylation (RAMs) which carry forward from an early to a later time point are more likely to be mechanistically relevant as compared to those that do not. Twelve of 69 RAMs (17%) present in B6C3F1 liver at 2 weeks were also seen at 4 weeks, while only 1 of the 123 RAMs (< 1%) present in C57BL/6 liver was seen at 4 weeks. In the B6C3F1 mice, 57 unique (as compared to the C57BL/6) regions of altered hepatic methylation (RAMs), predominantly hypomethylation, were observed at 2 weeks, increasing to 86 at 4 weeks. Changes in methylation were largely reversible. Altered methylation in liver was highly dissimilar to that of kidney. Following 4 weeks PB, bisulfite sequencing revealed hypomethylation of Ha-ras in B6C3F1, but not C57BL/6, which correlated with increased gene expression. These data indicate that (1) progressive, nonrandom changes in methylation provide an epigenetic mechanism underlying the ability of PB to cause mouse liver tumorigenesis and (2) susceptibility to tumorigenesis is related inversely to the capacity to maintain normal patterns of methylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.