IL-1β production is critically regulated by cytosolic molecular complexes, termed inflammasomes. Different inflammasome complexes have been described to date.While all inflammasomes recognize certain pathogens, it is the distinctive feature of NLRP3 inflammasome to be activated by many and diverse stimuli making NLRP3 the most versatile, and importantly also the most clinically implicated inflammasome. However, NLRP3 activation has remained the most enigmatic. It is not plausible that the intracellular NLRP3 receptor is able to detect all of its many and diverse triggers through direct interactions; instead, it is discussed that NLRP3 is responding to certain generic cellular stress-signals induced by the multitude of molecules that trigger its activation.An ever increasing number of studies link the sensing of cellular stress signals to a direct pathophysiological role of NLRP3 activation in a wide range of autoinflammatory and autoimmune disorders, and thus provide a novel mechanistic rational, on how molecules trigger and support sterile inflammatory diseases. A vast interest has created to unravel how NLRP3 becomes activated, since mechanistic insight is the prerequisite for a knowledge-based development of therapeutic intervention strategies that specifically target the NLRP3 triggered IL-1β production. In this review, we have updated knowledge on NLRP3 inflammasome assembly and activation and on the pyrin domain in NLRP3 that could represent a drug target to treat sterile inflammatory diseases. We have reported mutations in NLRP3 that were found to be associated with certain diseases. In addition, we have reviewed the functional link between NLRP3 inflammasome, the regulator of cellular redox status Trx/TXNIP complex, endoplasmic reticulum stress and the pathogenesis of diseases such as type 2 diabetes. Finally, we have provided data on NLRP3 inflammasome, as a critical regulator involved in the pathogenesis of obesity and cardiovascular diseases.
The thioredoxin (Trx) system comprises Trx, truncated Trx (Trx-80), Trx reductase, and NADPH, besides a natural Trx inhibitor, the thioredoxin-interacting protein (TXNIP). This system is essential for maintaining the balance of the cellular redox status, and it is involved in the regulation of redox signaling. It is also pivotal for growth promotion, neuroprotection, inflammatory modulation, antiapoptosis, immune function, and atherosclerosis. As an ubiquitous and multifunctional protein, Trx is expressed in all forms of life, executing its function through its antioxidative, protein-reducing, and signal-transducing activities. In this review, the biological properties of the Trx system are highlighted, and its implications in several human diseases are discussed, including cardiovascular diseases, heart failure, stroke, inflammation, metabolic syndrome, neurodegenerative diseases, arthritis, and cancer. The last chapter addresses the emerging therapeutic approaches targeting the Trx system in human diseases.
Background— This study was designed to evaluate the effect of arglabin on the NLRP3 inflammasome inhibition and atherosclerotic lesion in ApoE 2 Ki mice fed a high-fat Western-type diet. Methods and Results— Arglabin was purified, and its chemical identity was confirmed by mass spectrometry. It inhibited, in a concentration-dependent manner, interleukin (IL)-1β and IL-18, but not IL-6 and IL-12, production in lipopolysaccharide and cholesterol crystal–activated cultured mouse peritoneal macrophages, with a maximum effect at ≈50 nmol/L and EC 50 values for both cytokines of ≈ 10 nmol/L. Lipopolysaccharide and cholesterol crystals did not induce IL-1β and IL-18 production in Nlrp3 −/− macrophages. In addition, arglabin activated autophagy as evidenced by the increase in LC3-II protein. Intraperitoneal injection of arglabin (2.5 ng/g body weight twice daily for 13 weeks) into female ApoE 2 .Ki mice fed a high-fat diet resulted in a decreased IL-1β plasma level compared with vehicle-treated mice (5.2±1.0 versus 11.7±1.1 pg/mL). Surprisingly, arglabin also reduced plasma levels of total cholesterol and triglycerides to 41% and 42%, respectively. Moreover, arglabin oriented the proinflammatory M1 macrophages into the anti-inflammatory M2 phenotype in spleen and arterial lesions. Finally, arglabin treatment markedly reduced the median lesion areas in the sinus and whole aorta to 54% ( P =0.02) and 41% ( P =0.02), respectively. Conclusions— Arglabin reduces inflammation and plasma lipids, increases autophagy, and orients tissue macrophages into an anti-inflammatory phenotype in ApoE 2 .Ki mice fed a high-fat diet. Consequently, a marked reduction in atherosclerotic lesions was observed. Thus, arglabin may represent a promising new drug to treat inflammation and atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.