Background: Benzimidazole (BZ) resistance in gastrointestinal nematodes is a worldwide problem for livestock production, particularly in small ruminants. Assignment of the emergence of resistance using sensitive and reliable methods is required to adopt the correct strategies for control. In Sudan, BZ resistant Haemonchus contortus populations were recently reported in goats in South Darfur. This study aimed to provide additional data regarding albendazole efficacy and to describe the prevailing molecular BZ resistance mechanisms. Methods: Faecal egg count reduction and egg hatch tests (EHT) were used to evaluate albendazole efficacy in three different areas of South Darfur using naturally (Rehed Al-Birdi and Tulus) and experimentally infected (Tulus and Um Dafuq) goats. Using samples from Central, East and South Darfur, pyro-and Sanger sequencing were used to detect the polymorphisms F167Y, E198A and F200Y in H. contortus isotype 1 β-tubulin in DNA extracted from pooled thirdstage larval (L3) samples (n = 36) on days 0 and 10 during trials, and from pooled adult male H. contortus (treated goats, n = 14; abattoirs, n = 83) including samples from populations previously found to be resistant in South Darfur. Results: Albendazole efficacies at 5, 7.5 and 10 mg/kg doses were 73.5-90.2% on day 14 in natural and experimental infections while 12.5 mg/kg showed > 96.6% efficacy. EC 50 in the EHT were 0.8 and 0.11 µg/ml thiabendazole in natural and experimental infection trials, respectively. PCRs detected Haemonchus, Trichostrongylus and Cooperia in L3 samples from albendazole-treated goats. Haemonchus contortus allele frequencies in codons 167 and 200 using pyrosequencing assays were ≤ 7.4% while codon 198 assays failed. Sanger sequencing revealed five novel polymorphisms at codon 198. Noteworthy, an E198L substitution was present in 82% of the samples (L3 and adults) including all post-treatment samples. Moreover, E198V, E198K and potentially E198I, and E198Stop were identified in a few samples. Conclusions: To our knowledge, this is the first report of E198L in BZ resistant H. contortus and the second where this is the predominant genotype associated with resistance in any strongyle species. Since this variant cannot be quantified using pyrosequencing, the results highlight important limitations in the general applicability of pyrosequencing to quantify BZ resistance genotypes.
Background Since pastoralists in South Darfur, Sudan, had complained about lack of albendazole (ABZ) efficacy to control nematodes in goats, the frequency of infection with gastrointestinal helminths was studied before in vivo faecal egg count reduction tests (FECRT) were conducted using ABZ orally either at the dose recommended for sheep, 5 mg/kg body weight (bw) or at 10 mg/kg bw. Experiments included goats naturally infected with gastrointestinal nematodes or experimentally infected with local Haemonchus contortus isolates. Three study areas (Nyala, Beleil and Kass) were visited in autumn or winter. Results Out of 478 screened goats, 82.4% were infected with gastrointestinal helminths and 82% were shedding eggs of strongyle nematodes with 90% of the strongyle larvae representing Haemonchus spp. A FECRT using naturally infected goats ( n = 225: 71 untreated, 104 and 50 treated with 5 and 10 mg ABZ/kg bw, respectively) detected reduced ABZ efficacy in Nyala and Kass. Paired and unpaired FECRT calculations detected reductions of 72–92% with samples taken at 8 days post treatment with 5 mg ABZ/kg bw and of 85–94% with 10 mg ABZ/kg bw. The FECRT based on day 14 post treatment samples showed reductions of 69–77% with 5 mg/kg and of 75–87% with 10 mg ABZ/kg bw. In Beleil, ABZ efficacy was 95%. In the egg hatch test EC 50 values for Nyala and Kass ranged from 0.12–0.24 μg thiabendazole/ml, corresponding to benzimidazole resistant phenotypes. Only Haemonchus spp. larvae were present after treatments in coprocultures. When the efficacy was evaluated experimentally using isolates of H. contortus from Nyala and Kass, the 5 mg ABZ/kg dose revealed reductions of 76–78% on day 8 and of 62–70% on day 14 with the unpaired method. Using 10 mg ABZ/kg, the FECR was still only 77–82%. Conclusions Both, in vivo and in vitro methods detected resistant H. contortus populations in goats from South Darfur State. The time point 14 days post treatment was more sensitive for detection of ABZ resistance than 8 days post treatment. This is the first report on the occurrence of anthelmintic resistance in Sudan confirming that anthelmintic resistance selection is occurring in African subsistence farming systems. Electronic supplementary material The online version of this article (10.1186/s12917-019-1937-2) contains supplementary material, which is available to authorized users.
Intra-arterial administration of 0.25 ml physiological saline to the non-pregnant goat between days 12 and 20 of the oestrous cycle did not affect luteal regression, which was characterized by decreasing peripheral plasma progesterone concentration, beginning on day 13 of the oestrous cycle, and an increase in the plasma concentration of 13, 14-dihydro-15-keto-prostaglandin F2 alpha (PGFM) as oestrus approached on about day 20. Intra-arterial administration of oxytocin antagonist (OA) in saline at a dose of 0.2 microgram kg-1 body weight to goats between days 12 and 20 of the cycle significantly (P less than 0.001) delayed luteal regression beyond day 20 (to day 26). Injection of OA maintained plasma progesterone secretion at 4-5 ng ml-1 till day 23 of the cycle and suppressed the increase in PGFM concentration. Corpus luteum extract (100 microliters) of OA-treated animals released a significant (P less than 0.001) amount of PGF2 alpha from rat uterus in vitro as did authentic oxytocin. This oxytocic material failed to release PGF2 alpha during luteolysis in the goat, suggesting that oxytocin receptors for PGF2 alpha release may be occupied by OA. It is concluded that oxytocin-receptor interaction in the uterus may be the stimulus for PGF2 alpha release which triggers luteal regression in the goat.
Background Benzimidazole (BZ) anthelmintics are widely used to control infections with parasitic nematodes, but BZ resistance is an emerging threat among several nematode species infecting humans and animals. In Sudan, BZ-resistant Haemonchus contortus populations were recently reported in goats in South Darfur State. The objective of this study was to collect data regarding the situation of BZ resistance in cattle parasitic nematodes in South Darfur using phenotypic and molecular approaches, besides providing some epidemiological data on nematodes in cattle. Methods The faecal egg count reduction test and the egg hatch test (EHT) were used to evaluate benzimidazole efficacy in cattle nematodes in five South Darfur study areas: Beleil, Kass, Nyala, Rehed Al-Birdi and Tulus. Genomic DNA was extracted from pools of third-stage larvae (L3) (n = 40) during trials, before and after treatment, and pools of adult male Haemonchus spp. (n = 18) from abattoirs. The polymorphisms F167Y, E198A and F200Y in isotype 1 β-tubulin genes of H. contortus and H. placei were analysed using Sanger and pyrosequencing. Results Prevalence of gastro-intestinal helminths in cattle was 71% (313/443). Reduced albendazole faecal egg count reduction efficacy was detected in three study areas: Nyala (93.7%), Rehed Al-Birdi (89.7%) and Tulus (88.2%). In the EHT, EC50 values of these study areas ranged between 0.032 and 0.037 µg/ml thiabendazole. Genus-specific PCRs detected the genera Haemonchus, Trichostrongylus and Cooperia in L3 samples collected after albendazole treatment. Sanger sequencing followed by pyrosequencing assays did not detect elevated frequencies of known BZ resistance-associated alleles in codon F167Y, E198A and F200Y in isotype 1 β-tubulin gene of H. placei (≤ 11.38%). However, polymorphisms were detected in H. contortus and in samples with mixed infections with H. contortus and H. placei at codon 198, including E198L (16/58), E198V (2/58) and potentially E198Stop (1/58). All pooled L3 samples post-albendazole treatment (n = 13) were identified as H. contortus with an E198L substitution at codon 198. Conclusions To the knowledge of the authors, this is the first report of reduced albendazole efficacy in cattle in Sudan and is the first study describing an E198L substitution in phenotypically BZ-resistant nematodes collected from cattle.
The pharmacokinetics of amoxicillin were studied in five Desert sheep and five Nubian goats after intravenous (i.v.) or intramuscular (i.m.) administration of a single dose of 10 mg/kg body weight. Following i.v. injection, the plasma concentration-versus-time data were best described by a two-compartment open model. The kinetic variables were similar in both species except for the volume of the central compartment (Vc), which was larger in sheep (p<0.05). Following i.m. injection, except for the longer half-life time of absorption in goats (p<0.05), there were no significant differences in other pharmacokinetic parameters between sheep and goats. The route of amoxicillin administration had no significant effect on the terminal elimination half-life in either species. The bioavailability of the drug (F) after i.m. administration was high (> 0.90) in both species. These results indicate that the pharmacokinetics of amoxicillin did not differ between sheep and goats; furthermore, because of the high availability and short half-life of absorption, the i.m. route gives similar results to the i.v. route. Therefore, identical intramuscular and intravenous dose regimens should be applicable to both species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.