Dalbergioid is a large group within the family Fabaceae that consists of diverse plant species distributed in distinct biogeographic realms. Here, we have performed a comprehensive study to understand the evolution of the nucleotide-binding leucine-rich repeats (NLRs) gene family in Dalbergioids. The evolution of gene families in this group is affected by a common whole genome duplication that occurred approximately 58 million years ago, followed by diploidization that often leads to contraction. Our study suggests that since diploidization, the NLRome of all groups of Dalbergioids is expanding in a clade-specific manner with fewer exceptions. Phylogenetic analysis and classification of NLRs revealed that they belong to seven subgroups. Specific subgroups have expanded in a species-specific manner, leading to divergent evolution. Among the Dalbergia clade, the expansion of NLRome in six species of the genus Dalbergia was observed, with the exception of Dalbergia odorifera, where a recent contraction of NLRome occurred. Similarly, members of the Pterocarpus clade genus Arachis revealed a large-scale expansion in the diploid species. In addition, the asymmetric expansion of NLRome was observed in wild and domesticated tetraploids after recent duplications in the genus Arachis. Our analysis strongly suggests that whole genome duplication followed by tandem duplication after divergence from a common ancestor of Dalbergioids is the major cause of NLRome expansion. To the best of our knowledge, this is the first ever study to provide insight toward the evolution of NLR genes in this important tribe. In addition, accurate identification and characterization of NLR genes is a substantial contribution to the repertoire of resistances among members of the Dalbergioids species.
BackgroundPseudomonas syringae pv. glycinea PG4180 causes bacterial blight on soybean plants and enters the leaf tissue through stomata or open wounds, where it encounters a sucrose-rich milieu. Sucrose is utilized by invading bacteria via the secreted enzyme, levansucrase (Lsc), liberating glucose and forming the polyfructan levan. P. syringae PG4180 possesses two functional lsc alleles transcribed at virulence-promoting low temperatures.ResultsWe hypothesized that transcription of lsc is controlled by the hexose metabolism repressor, HexR, since potential HexR binding sites were identified upstream of both lsc genes. A hexR mutant of PG4180 was significantly growth-impaired when incubated with sucrose or glucose as sole carbon source, but exhibited wild type growth when arabinose was provided. Analyses of lsc expression resulted in higher transcript and protein levels in the hexR mutant as compared to the wild type. The hexR mutant’s ability to multiply in planta was reduced. HexR did not seem to impact hrp gene expression as evidenced by the hexR mutant’s unaltered hypersensitive response in tobacco and its unmodified protein secretion pattern as compared to the wild type under hrp-inducing conditions.ConclusionsOur data suggested a co-regulation of genes involved in extra-cellular sugar acquisition with those involved in intra-cellular energy-providing metabolic pathways in P. syringae.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-015-0349-0) contains supplementary material, which is available to authorized users.
Several members of the ubiquitously found γ-proteobacterial genus Marinobacter were described or assumed to inhabit marine environments naturally enriched in heavy metals. However, direct studies that describe the ability of this genus to occupy such environments have not been conducted. To cope with heavy metal stress, bacteria possess specific efflux pumps as tools for detoxification, among which the CzcCBA type efflux system is one representative. Previous studies showed that this system plays an important role in resistance towards cadmium, zinc, and cobalt. Up to now, no study had focused on characterization of Czc pumps in Marinobacter sp. or other marine prokaryotes. Herein, we elucidated the function of two CzcCBA pumps encoded by Marinobacter adhaerens HP15's genome during exposure to cadmium, zinc, and cobalt. Single and double knock-out mutants lacking the corresponding two czcCBA operons were generated and analyzed in terms of their resistance profiles. Both operons appeared to be important for zinc resistance but had no role in tolerance towards cadmium or cobalt. One of the mutations was genetically complemented thereby restoring the wild type phenotype. In accordance with the resistance pattern, expression of the genes coding for both CzcCBA pumps was induced by zinc but neither by cadmium nor cobalt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.