Smart health-care is undergoing rapid transformation from the conventional specialist and hospital-focused style to a distributed patient-focused manner. Several technological developments have encouraged this rapid revolution of health-care vertical. Currently, 4G and other communication standards are used in health-care for smart health-care services and applications. These technologies are crucial for the evolution of future smart health-care services. With the growth in the health-care industry, several applications are expected to produce a massive amount of data in different format and size. Such immense and diverse data needs special treatment concerning the end-to-end delay, bandwidth, latency and other attributes. It is difficult for current communication technologies to fulfil the requirements of highly dynamic and time-sensitive health care applications of the future. Therefore, the 5G networks are being designed and developed to tackle the diverse communication needs of health-care applications in Internet of Things (IoT). 5G assisted smart health-care networks are an amalgamation of IoT devices that require improved network performance and enhanced cellular coverage. Current connectivity solutions for IoT face challenges, such as the support for a massive number of devices, standardisation, energy-efficiency, device density, and security. In this paper, we present a comprehensive review of 5G assisted smart health-care solutions in IoT. We present a structure for smart health-care in 5G by categorizing and classifying existing literature. We also present key requirements for successful deployment of smart health-care systems for certain scenarios in 5G. Finally, we discuss several open issues and research challenges in 5G smart health-care solutions in IoT.
As the world pushes toward the use of greener technology and minimizes energy waste, energy efficiency in the wireless network has become more critical than ever. The next-generation networks, such as 5G, are being designed to improve energy efficiency and thus constitute a critical aspect of research and network design. The 5G network is expected to deliver a wide range of services that includes enhanced mobile broadband, massive machine-type communication and ultra-reliability, and low latency. To realize such a diverse set of requirement, 5G network has evolved as a multi-layer network that uses various technological advances to offer an extensive range of wireless services. Several technologies, such as software-defined networking, network function virtualization, edge computing, cloud computing, and small cells, are being integrated into the 5G networks to fulfill the need for diverse requirements. Such a complex network design is going to result in increased power consumption; therefore, energy efficiency becomes of utmost importance. To assist in the task of achieving energy efficiency in the network machine learning technique could play a significant role and hence gained significant interest from the research community. In this paper, we review the state-of-art application of machine learning techniques in the 5G network to enable energy efficiency at the access, edge, and core network. Based on the review, we present a taxonomy of machine learning applications in 5G networks for improving energy efficiency. We discuss several issues that can be solved using machine learning regarding energy efficiency in 5G networks. Finally, we discuss various challenges that need to be addressed to realize the full potential of machine learning to improve energy efficiency in the 5G networks. The survey presents a broad range of ideas related to machine learning in 5G that addresses the issue of energy efficiency in virtualization, resource optimization, power allocation, and incorporating enabling technologies of 5G can enhance energy efficiency.
Until now, every evolution of communication standard was driven by the need for providing high-speed connectivity to the end-user. However, 5G marks a radical shift from this focus as 5G and beyond networks are being designed to be future-proof by catering to diverse requirements of several use cases. These requirements include Ultra-Reliable Low Latency Communications, Massive Machine-Type Communications and Enhanced Mobile Broadband. To realize such features in 5G and beyond, there is a need to rethink how current cellular networks are deployed because designing new radio access technologies and utilizing the new spectrum are not enough. Several technologies, such as software-defined networking, network function virtualization, machine learning and cloud computing, are being integrated into the 5G networks to fulfil the need for diverse requirements. These technologies, however, give rise to several challenges associated with decentralization, transparency, interoperability, privacy and security. To address these issues, Blockchain has emerged as a potential solution due to its capabilities such as transparency, data encryption, auditability, immutability and distributed architecture. In this paper, we review the state-of-art application of Blockchain in 5G network and explore how it can facilitate enabling technologies of 5G and beyond to enable various services at the front-haul, edge and the core. Based on the review, we present a taxonomy of Blockchain application in 5G networks and discuss several issues that can be solved using Blockchain integration. We then present various field-trials and Proof of concept that are using Blockchain to address the challenges faced in the current 5G deployment. Finally, we discuss various challenges that need to be addressed to realize the full potential of Blockchain in beyond 5G networks. The survey presents a broad range of ideas related to Blockchain integration in 5G and beyond networks that address issues such as interoperability, security, mobility, resource allocation, resource sharing and management, energy efficiency and other desirable features.
The global surge of connected devices and multimedia services necessitates increased capacity and coverage of communication networks. One approach to address the unprecedented rise in capacity and coverage requirement is deploying several small cells to create ultra-dense networks. This, however, exacerbates problems with energy consumption and network management due to the density and unplanned nature of the deployment. This review discusses various approaches to solving energy efficiency problems in ultra-dense networks, ranging from deployment to optimisation. Based on the review, we propose a taxonomy, summarise key findings, and discuss operational and implementation details of past research contributions. In particular, we focus on popular approaches such as machine learning, game theory, stochastic and heuristic techniques in the ultra-dense network from an energy perspective due to their promise in addressing the issue in future networks. Furthermore, we identify several challenges for improving energy efficiency in an ultra-dense network. Finally, future research directions are outlined for improving energy efficiency in ultra-dense networks in 5G and beyond 5G networks.
With advantages such as short and long transmission ranges, D2D communication, low latency, and high node density, the 5G communication standard is a strong contender for smart healthcare. Smart healthcare networks based on 5G are expected to have heterogeneous energy and mobility, requiring them to adapt to the connected environment. As a result, in 5G-based smart healthcare, building a routing protocol that optimizes energy consumption, reduces transmission delay, and extends network lifetime remains a challenge. This paper presents a clustering-based routing protocol to improve the Quality of services (QoS) and energy optimization in 5G-based smart healthcare. QoS and energy optimization are achieved by selecting an energy-efficient clustering head (CH) with the help of game theory (GT) and best multipath route selection with reinforcement learning (RL). The cluster head selection is modeled as a clustering game with a mixed strategy considering various attributes to find equilibrium conditions. The parameters such as distance between nodes, the distance between nodes and base station, the remaining energy and speed of mobility of the nodes were used for cluster head (CH) selection probability. An energy-efficient multipath routing based on reinforcement learning (RL) having (Q-learning) is proposed. The simulation result shows that our proposed clustering-based routing approach improves the QoS and energy optimization compared to existing approaches. The average performances of the proposed schemes CRP-GR and CRP-G are 78% and 71%, respectively, while the existing schemes, such as FBCFP, TEEN and LEACH have average performances of 63%, 48% and 35% accordingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.