Broadcast is one of the most important approach in distributed memory parallel computers that is used to find a routing approach from a one source to all nodes in the mesh. Broadcasting is a data communication task in which corresponds 1.INTRODUCTIONOne of the important and popular architecture in both of scientific computation and high speed computing applications is multicomputer architecture where it is used efficiently in weather forecast and high performance servers. Multicomputer network consists of hundreds or thousands of nodes connected in some fixed topology; each of them contains a microprocessor, local memory, and other supporting devices. Most of the popular direct network topologies fall in the general category of either n-dimensional meshes or k-ary n-cubes because their regular topologies and simple routing. Some sample topologies are shown in Fig. 1. Among topologies, the most commonly used are meshes, tori, hypercubes and trees. The Mesh-based topologies are the most regular simple architecture that is used in multicomputers. This is because that the implementation of mesh is very simple and easy to understand. These properties which are necessary for every topology design [1]. Recent interest in multicomputer systems is therefore concentrated on two-dimensional or three-dimensional mesh and torus networks. Such technology has been adopted by the Intel Touchstone DELTA
Anew approach to broadcast in wormhole routed three-dimensional networks is proposed. One of the most important process in communication and parallel computer is broadcast approach.. The approach of this case of Broadcasting is to send the message from one source to all destinations in the network which corresponds to one-to-all communication. Wormhole routing is a fundamental routing mechanism in modern parallel computers which is characterized with low communication latency. We show how to apply this approach to 3-D meshes. Wormhole routing is divided the packets into set of FLITS (flow control digits). The first Flit of the packet (Header Flit) is containing the destination address and all subsets flits will follow the routing way of the header Flit. In this paper, we consider an efficient algorithm for broadcasting on an all-port wormhole-routed 3D mesh with arbitrary size. We introduce an efficient algorithm, Y-Hamiltonian Layers Broadcast(Y-HLB). In this paper the behaviors of this algorithm were compared to the previous results, our paradigm reduces broadcast latency and is simpler. In this paper our simulation results show the average of our proposed algorithm over the other algorithms that presented.
Broadcast is one of the most important approach in distributed memory parallel computers that is used to find a routing approach from one source to all nodes in the mesh. Broadcasting is a data communication task in which corresponds to one-to-all communication. Routing schema is the approach used to determine the road that is used to send a message from a source node to destination nodes. In this paper, we propose an efficient algorithm for broadcasting on an all-port wormhole-routed 3D mesh with arbitrary size. Wormhole routing is a fundamental routing mechanism in modern parallel computers which is characterized with low communication latency. We show how to apply this approach to 3-D meshes. In wormhole, routing large network packets are broken into small pieces called FLITs (flow control digits). The destination address is kept in the first flit which is called the header flit and sets up the routing behavior for all subsequent flits associated with the packet. In this paper, we introduce an efficient algorithm, X-Hamiltonian Surface Broadcast (X-HSB) which uses broadcast communication facility with deadlock-free wormhole routing in general three dimensional networks. In this paper, the behaviors of this algorithm are compared to the previous results using simulation; our paradigm reduces broadcast latency and is simpler. The results presented in this paper indicate the advantage of our proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.