Ultrasonic pulse-echo methods have been used extensively in measuring the thickness of layered structures as well as those of thin adhesive interface layers. When acoustically measuring thin layers, the resulting echoes from two successive interfaces overlap in time, limiting the minimum thickness that can be resolved using conventional pulse-echo techniques. In this paper, we propose a method, named support matching pursuit (SMP), for resolving the individual echoes. The method is based on the concept of sparse signal approximation in an overcomplete dictionary composed of Gabor atoms (elementary functions). Although the dictionary enables highly flexible approximations, it is also overcomplete, which implies that the approximation is not unique. We propose a method for approximation in which each ultrasonic echo is principally represented by a single atom and therefore has a physical interpretation. SMP operates similarly to the sparse matching pursuit (MP) method. It iteratively improves the approximation by adding, at each iteration, a single atom to the solution set. However, our atom selection criterion utilizes the time localization nature of ultrasonic echoes, which causes portions of a multi-echo ultrasonic signal to be composed mainly from a single echo. This leads to accurate approximations in which each echo is characterized by a set of physical parameters that represent the composing ultrasonic echoes. In the current research we compare SMP to other sparse approximation methods such as MP and basis pursuit (BP). We perform simulations and experiments on adhesively bonded structures which clearly demonstrate the superior performance of the SMP method over the MP and BP methods.
The wide use of high intensity ultrasound (HIU) in modern medicine raises the question of bio-safety. It has been shown that the effect of HIU in biological media may have similarity to the effects of ionizing radiation. Exposure of biological media to HIU field may lead to cavitation phenomenon followed by formation of free radicals such as hydroxyl radical (OH(·)) and the super-oxide ion (O(2)(·-)). These are highly reactive species that may cause harmful effects and induce oxidative stress. In the present study we employed electron spin resonance (ESR) spectroscopy together with spin traps to quantify the dynamics of hydroxyl radical formation during exposure to HIU field in the presence of different amounts of six antioxidants. Thus, the efficiency of water-soluble antioxidants, namely Allicin, Melatonin, Deoxyribose, Trolox, Nuphlutine and Hermidin, to suppress accumulation of OH radicals was examined. The results show that among the six, Trolox and Allicin reduce hydroxyl concentration with the highest efficiency.
Ultrasonic pulse-echo methods have been used extensively in non-destructive testing of layered structures. In acoustic measurements on thin layers, the resulting echoes from two successive interfaces overlap in time, making it difficult to assess the individual echo parameters. Over the last decade sparse approximation methods have been extensively used to address this issue. These methods employ a large dictionary of elementary functions (atoms) and attempt to select the smallest subset of atoms (sparsest approximation) that represent the ultrasonic signal accurately. In this paper we propose the cluster-enhanced sparse approximation (CESA) method for estimating overlapping ultrasonic echoes. CESA is specifically adapted to deal with a large number of signals acquired during an ultrasonic scan. It incorporates two principal algorithms. The first is a clustering algorithm, which divides a set of signals comprising an ultrasonic scan into groups of signals that can be approximated by the same set of atoms. The second is a two-stage iterative algorithm, which alternates between update of the atoms associated with each cluster, and re-clustering of the signals according to the updated atoms. Because CESA operates on clusters of signals, it achieves improved results in terms of approximation error and computation time compared with conventional sparse methods, which operate on each signal separately. The superior ability of CESA to approximate highly overlapping ultrasonic echoes is demonstrated through simulation and experiments on adhesively bonded structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.