Mixed‐matrix membranes (MMMs) have been studied widely in the field of gas separation due to their potential to overcome performance barriers found in traditional polymeric membranes. Most polymeric membranes exhibit a trade‐off between permeation and selectivity, which has limited their development in many challenging separation applications. One solution to this issue utilizes the introduction of fillers into the polymer matrix to produce MMMs. Out of the many different fillers, metal–organic frameworks stand out as a promising candidate due to their highly tunable structure, molecular sieving effect, and superior compatibility with the polymer matrix. This review will provide an in‐depth look into the basic mechanisms of MMMs for gas separation and different approaches to model the permeation of gases through the membrane. In addition, challenges facing the field and recent research trends for MMMs will be discussed as well as their many applications for different gas separations. Finally, some insight on the future direction for MMMs will be covered, focusing on many intriguing opportunities and challenges that must be further explored to advance this technology.
Iron ore pellet reduction experiments were performed with pure hydrogen (H2) and mixtures with carbon monoxide (CO) at different ratios. For direct reduction processes that switch dynamically between reformed natural gas and hydrogen as the reductant, it is important to understand the effects of the transition on the oxide reduction kinetics to optimize the residence time of iron ore pellets in a shaft reactor. Hence, the reduction rates were studied by varying experimental parameters such as the temperature (800, 850 & 900 °C), reactant gas flow rate (100, 150 & 200 cm3/min), pellet size and composition of the reactant gas mixture. The rate of reduction was observed to increase with an increase in temperature and reactant gas flow rate, but it decreased with an increase in pellet size. SEM greyscale analysis was performed to analyze the porosity and phase composition of partially reduced pellets. The porosity of the pellets was observed to increase from 0.3 for unreacted pellet to 0.42 for a completely reduced pellet. Energy-dispersive X-ray spectroscopy (EDAX) analysis was performed to identify the phases observed in the SEM images. The fraction of iron phase was observed to increase from the shell region of the pellet to the core region with an increase in the degree of reduction. A 2D-axisymmetric numerical model was developed on COMSOL Multiphysics, and it was validated using the conversion (X) vs. time curves obtained from each experiment. The model was able to accurately predict the total time needed for the complete conversion of a single iron ore pellet for multiple experiments. Effects of changes in the porosity and tortuosity of the pellet on the model were also studied and the rate of reduction was observed to be sensitive to changes in both porosity and tortuosity. The SEM analysis and the model results show that tortuosity is higher for pellets reduced with H2 than for pellets reduced with H2-CO gas mixtures.
Direct reduction of iron ore (DRI) is gaining an increased attention due to the growing need to decarbonize industrial processes. The current industrial DRI processes are performed using reformed natural gas, which results in CO2 emission, although it is less than carbothermic reduction in the blast furnace. Carbon‐free reduction may be realized through the utilization of green H2 as a reducing agent, in place of natural gas. Herein, the effects of various gas mixtures and temperature on the reduction kinetics of the hematite iron‐ore pellets are focused on in this work. Pellets are reduced at 700, 800, 850, and 900 °C in hydrogen and using various gas mixes at 850 °C. Morphology of the pellets is investigated with the help of scanning electron microscopy and mercury intrusion porosimetry. The effects of temperature and gas composition on the reduction kinetics and porosity of the pellets are discussed. A notable effect of reduction rate on the internal structure of the pellets is detected, slower reduction rate yielded bigger pores offsetting the gas composition. Higher temperature results in coarser pores and higher porosity. Increase of CO content in the gas mix also leads to bigger pore size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.