Low Power dissipation and smaller area are one of the important factors while designing multipliers for digital circuits. As multipliers used in digital circuits dissipate large amount of heat whenever there is a transition of bits. Reversible Logic has emerged as a promising technology in reducing power dissipation. It has application in various fields such as low power VLSI, Quantum computing and Nano-technology. Hence, In this paper we try to design a reversible multiplier using Peres gate and Full adder. We show that, proposed multiplier is efficient in terms area, power and delay. Furthermore, it requires fewer garbage outputs and constant inputs. Proposed reversible multiplier is implemented using VHDL, simulated and synthesized on Xilinx 13.1 tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.