Purpose Industrial robots are extensively deployed to perform repetitive and simple tasks at high speed to reduce production time and improve productivity. In most cases, a compliant gripper is used for assembly tasks such as peg-in-hole assembly. A compliant mechanism in the gripper introduces flexibility that may cause oscillation in the grasped object. Such a flexible gripper–object system can be considered as an under-actuated object held by the gripper and the oscillations can be attributed to transient disturbance of the robot itself. The commercially available robots do not have a control mechanism to reduce such induced vibration. Thus, this paper aims to propose a contactless vision-based approach for vibration suppression which uses a predictive vibrational amplitude error-based second-stage controller. Design/methodology/approach The proposed predictive vibrational amplitude error-based second-stage controller is a real-time vibration control strategy that uses predicted error to estimate the second-stage controller output. Based on controller output, input trajectories were estimated for the internal controller of the robot. The control strategy efficiently handles the system delay to execute the control input trajectories when the oscillating object is at an extreme position. Findings The present controller works along with the internal controller of the robot without any interruption to suppress the residual vibration of the object. To demonstrate the robustness of the proposed controller, experimental implementation on Asea Brown Boveri make industrial robot (IRB) 1410 robot with a low frame rate camera has been carried out. In this experiment, two objects have been considered that have a low (<2.38 Hz) and high (>2.38 Hz) natural frequency. The proposed controller can suppress 95% of vibration amplitude in less than 3 s and reduce the stability time by 90% for a peg-in-hole assembly task. Originality/value The present vibration control strategy uses a camera with a low frame rate (25 fps) and the delays are handled intelligently to favour suppression of high-frequency vibration. The mathematical model and the second-stage controller implemented suppress vibration without modifying the robot dynamical model and the internal controller.
Purpose Industrial robots are extensively used in the robotic assembly of rigid objects, whereas the assembly of flexible objects using the same robot becomes cumbersome and challenging due to transient disturbance. The transient disturbance causes vibration in the flexible object during robotic manipulation and assembly. This is an important problem as the quick suppression of undesired vibrations reduces the cycle time and increases the efficiency of the assembly process. Thus, this study aims to propose a contactless robot vision-based real-time active vibration suppression approach to handle such a scenario. Design/methodology/approach A robot-assisted camera calibration method is developed to determine the extrinsic camera parameters with respect to the robot position. Thereafter, an innovative robot vision method is proposed to identify a flexible beam grasped by the robot gripper using a virtual marker and obtain the dimension, tip deflection as well as velocity of the same. To model the dynamic behaviour of the flexible beam, finite element method (FEM) is used. The measured dimensions, tip deflection and velocity of a flexible beam are fed to the FEM model to predict the maximum deflection. The difference between the maximum deflection and static deflection of the beam is used to compute the maximum error. Subsequently, the maximum error is used in the proposed predictive maximum error-based second-stage controller to send the control signal for vibration suppression. The control signal in form of trajectory is communicated to the industrial robot controller that accommodates various types of delays present in the system. Findings The effectiveness and robustness of the proposed controller have been validated using simulation and experimental implementation on an Asea Brown Boveri make IRB 1410 industrial robot with a standard low frame rate camera sensor. In this experiment, two metallic flexible beams of different dimensions with the same material properties have been considered. The robot vision method measures the dimension within an acceptable error limit i.e. ±3%. The controller can suppress vibration amplitude up to approximately 97% in an average time of 4.2 s and reduces the stability time up to approximately 93% while comparing with control and without control suppression time. The vibration suppression performance is also compared with the results of classical control method and some recent results available in literature. Originality/value The important contributions of the current work are the following: an innovative robot-assisted camera calibration method is proposed to determine the extrinsic camera parameters that eliminate the need for any reference such as a checkerboard, robotic assembly, vibration suppression, second-stage controller, camera calibration, flexible beam and robot vision; an approach for robot vision method is developed to identify the object using a virtual marker and measure its dimension grasped by the robot gripper accommodating perspective view; the developed robot vision-based controller works along with FEM model of the flexible beam to predict the tip position and helps in handling different dimensions and material types; an approach has been proposed to handle different types of delays that are part of implementation for effective suppression of vibration; proposed method uses a low frame rate and low-cost camera for the second-stage controller and the controller does not interfere with the internal controller of the industrial robot.
Misalignment is among the most common causes of vibrations in rotary machinery. Modern machinery is complicated and installing a sensor might be tricky at times. As a result, non-contact type sensors are critical in such situations. The present study investigates the influence of combinations between speed, load, and fault severity upon system vibration employing acoustic sensor. Although acoustic sensor is used in angular fault diagnosis, but this is the first attempt to combine the noncontact type of sensor and Response Surface Methodology (RSM) to study the influence of misalignment upon system vibration and the factors that induce system vibrations in a misaligned rotor system. To investigate the effect of these interactions on system performance, RSM with Root Mean Square (RMS) as a response factor is used. Design of experiments is used to prepare experiments, while Analysis of Variance (ANOVA) is used to analyze the results. Speed has a significant impact on RMS value in both parallel and angular types of misalignments and it severely affects the system performance. According to the RSM findings, a change in load, influences vibration amplitude. With increasing defect severity, the change in RMS value was not particularly significant. The outcome of RSM using acoustic sensor found well aligned with the conclusion drawn using RSM study using vibrational sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.