We use data from our recent search for violations of the gravitational inverse-square law to constrain dilaton, radion, and chameleon exchange forces as well as arbitrary vector or scalar Yukawa interactions. We test the interpretation of the PVLAS Collaboration effect and a conjectured "fat-graviton" scenario and constrain the gamma_{5} couplings of pseuodscalar bosons and arbitrary power-law interactions.
If general relativity is the correct theory of physics on large scales, then there is a differential equation that relates the Hubble expansion function, inferred from measurements of angular diameter distance and luminosity distance, to the growth rate of large scale structure. For a dark energy fluid without couplings or an unusual sound speed, deviations from this consistency relationship could be the signature of modified gravity on cosmological scales. We propose a procedure based on this consistency relation in order to distinguish between some dark energy models and modified gravity models. The procedure uses different combinations of cosmological observations and is able to find inconsistencies when present. As an example, we apply the procedure to a universe described by a recently proposed 5-dimensional modified gravity model. We show that this leads to an inconsistency within the dark energy parameter space detectable by future experiments.
We introduce a new cosmic emulator for the matter power spectrum covering eight cosmological parameters. Targeted at optical surveys, the emulator provides accurate predictions out to a wavenumber k ∼ 5Mpc −1 and redshift z ≤ 2. Besides covering the standard set of ΛCDM parameters, massive neutrinos and a dynamical dark energy of state are included. The emulator is built on a sample set of 36 cosmological models, carefully chosen to provide accurate predictions over the wide and large parameter space. For each model, we have performed a high-resolution simulation, augmented with sixteen medium-resolution simulations and TimeRG perturbation theory results to provide accurate coverage of a wide k-range; the dataset generated as part of this project is more than 1.2Pbyte. With the current set of simulated models, we achieve an accuracy of approximately 4%. Because the sampling approach used here has established convergence and error-control properties, follow-on results with more than a hundred cosmological models will soon achieve ∼ 1% accuracy. We compare our approach with other prediction schemes that are based on halo model ideas and remapping approaches. The new emulator code is publicly available. Subject headings: methods: statistical -cosmology: large-scale structure of the universe
We consider how well the dark energy equation of state $w$ as a function of
red shift $z$ will be measured using current and anticipated experiments. We
use a procedure which takes fair account of the uncertainties in the functional
dependence of $w$ on $z$, as well as the parameter degeneracies, and avoids the
use of strong prior constraints. We apply the procedure to current data from
WMAP, SDSS, and the supernova searches, and obtain results that are consistent
with other analyses using different combinations of data sets. The effects of
systematic experimental errors and variations in the analysis technique are
discussed. Next, we use the same procedure to forecast the dark energy
constraints achieveable by the end of the decade, assuming 8 years of WMAP data
and realistic projections for ground-based measurements of supernovae and weak
lensing. We find the $2 \sigma$ constraints on the current value of $w$ to be
$\Delta w_0 (2 \sigma) = 0.20$, and on $dw/dz$ (between $z=0$ and $z=1$) to be
$\Delta w_1 (2 \sigma)=0.37$. Finally, we compare these limits to other
projections in the literature. Most show only a modest improvement; others show
a more substantial improvement, but there are serious concerns about
systematics. The remaining uncertainty still allows a significant span of
competing dark energy models. Most likely, new kinds of measurements, or
experiments more sophisticated than those currently planned, are needed to
reveal the true nature of dark energy.Comment: 24 pages, 20 figures. Added SN systematic uncertainties, extended
discussio
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.