Concentrations of ambient particulate-bound polycyclic aromatic hydrocarbons (pPAHs) were measured in PM10 samples collected at roadside, industrial and urban background sites in Bangkok between May 2013 and May 2014. The annual average PM10 concentrations were not significantly different between the roadside (56.4 ± 27.3 µg m−3) and industrial (51.0 ± 31.1 µg m−3) sites. The lowest annual mean PM10 was observed at the urban background site (39.8 ± 22.2 µg m−3). Seasonal variations of pPAHs were observed at the three sampling sites. The total pPAHs ranged between 1.09 and 13.10 ng m−3 (mean 4.85 ± 2.51 ng m−3), 1.49 and 9.39 ng m−3 (mean 3.84 ± 2.01 ng m−3) and 0.77 and 5.20 ng m−3 (mean 2.28 ± 1.16 ng m−3) at the roadside, industrial and urban background sites, respectively. The observed annual average benzo[a]pyrene concentrations were 0.47 ± 0.39 ng m−3, 0.35 ± 0.27 ng m−3 and 0.24 ± 0.19 ng m−3 at the roadside, industrial and urban background sites. Long-term carcinogenic health risk of inhalation exposure expressed as the toxicity equivalent to benzo[a]pyrene concentrations were calculated as 0.83, 0.72 and 0.39 ng m−3 at the industrial, roadside and urban background sites, respectively. The composition of pPAHs plays an important role in the carcinogenicity of a PAHs mixture.
Around three million premature deaths annually are ascribed to household air pollution (HAP) arising from inefficient burning of biomass and emissions of products of incomplete combustion. The developing-world response has been widespread adoption of improved cookstove (ICS) technologies. This exploratory study evaluates variation in polycyclic aromatic hydrocarbon (PAH) attached to inhalable particulate matter (PM) in rural Malawi households adopting ICS use. PM literature supports HAP exposure to inhalable PM is lowered, albeit variably, compared to traditional fires, but remains significant. Similar is expected for PAH; however, datasets lack discerning PAH chemical-specific contributions to risks. The study introduces the Malawian context, invokes a PAH reconnaissance approach sampling kitchen soot 'spots' and residential dusts, and relates PAH occurrence to the two sample types collected and ICS types surveyed. The total PAH for dusts was low (c. 2 μg/g mean), with volatile 2-ring naphthalene dominant. Soot total PAH was much higher (c. 200 μg/g mean to a maximum of 815 μg/g). Soot from PM emissions poses a major primary health concern. Despite PAH trends not being obvious with ICS type (limited sample size) and the wide range in soot total PAH, soot PAHfingerprints were well constrained with low variation of diagnostic PAH ratios, exhibiting n-ring fingerprints close to the soot median (0.1% 2-ring, 20% 3-ring, 61% 4-ring, 14% 5-ring, 5% 6-ring PAH). These corroborate the expected wood-related combustions sources, but also point to the needs to understand factors that control wide variations in PM and (total) PAH emitted as these control variations in HAP and differing risks posed to individual households. Further household-based research is thus recommended discerning relationships between PM emissions and PAH contents, driving the chemicalcomposition health risks. These should establish influences on PAH exposure arising from ICS type/model selected, operational modes, building/ventilation conditions, variable fuel sources and nonoptimal ICS use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.