Thailand has vast areas of tropical forests with many indigenous plants, but limited information is available on their phytochemical profile and in vitro inhibitions of enzymatic and nonenzymatic reactions. This study investigated phenolic profiles using liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI-MS/MS), antioxidant activities, and in vitro inhibitory activities of 10 indigenous plants on key enzymes related to obesity (lipase), diabetes (α-amylase and α-glucosidase), and Alzheimer’s disease (cholinesterases and β-secretase). The nonenzymatic anti-glycation reaction was also investigated. The 10 indigenous plants were Albizia lebbeck (L.) Benth, Alpinia malaccensis (Burm.) Roscoe, Careya arborea Roxb., Diplazium esculentum (Retz.) Swartz, Kaempferia roscoeana Wall., Millettia brandisiana Kurz., Momordica charantia, Phyllanthus emblica L., Zingiber cassumunar Roxb, and Zingiber citriodorum J. Mood & T. Theleide. Preparations were made by either freeze-drying or oven-drying processes. Results suggested that the drying processes had a minor impact on in vitro inhibitions of enzymatic and nonenzymatic reactions (<4-fold difference). P. emblica was the most potent antioxidant provider with high anti-glycation activity (>80% inhibition using the extract concentration of ≤6 mg/mL), while D. esculentum effectively inhibited β-secretase activity (>80% inhibition using the extract concentration of 10 mg/mL). C. arborea exhibited the highest inhibitory activities against lipase (47–51% inhibition using the extract concentration of 1 mg/mL) and cholinesterases (>60% inhibition using the extract concentration of 2 mg/mL), while Mi. brandisiana dominantly provided α-amylase and α-glucosidase inhibitors (>80% inhibition using the extract concentration of ≤2 mg/mL). Information obtained from this research may support usage of the oven-drying method due to its lower cost and easier preparation step for these studied plant species and plant parts. Furthermore, the information on in vitro inhibitions of enzymatic and nonenzymatic reactions could be used as fundamental knowledge for further investigations into other biological activities such as cell culture or in vivo experiments of these health-beneficial plants.
Fermented tea (Cha-miang in Thai) is a local product made by traditional food preservation processes in Northern Thailand that involve steaming fresh tea leaves followed by fermenting in the dark. Information on changes in nutritive values, bioactive compounds, antioxidant activities, and health properties that occur during the steaming and fermenting processes of tea leaves is, however, limited. Changes in nutritive values, phenolics, antioxidant activities, and in vitro health properties through inhibition of key enzymes that control obesity (lipase), diabetes (α-amylase and α-glucosidase), hypertension (angiotensin-converting enzyme (ACE)), and Alzheimer’s disease (cholinesterases (ChEs) and β-secretase (BACE-1)) of fermented tea were compared to the corresponding fresh and steamed tea leaves. Results showed that energy, carbohydrate, and vitamin B1 increased after steaming, while most nutrients including protein, dietary fiber, vitamins (B2, B3, and C), and minerals (Na, K, Ca, Mg, Fe, and Zn) decreased after the steaming process. After fermentation, energy, fat, sodium, potassium, and iron contents increased, while calcium and vitamins (B1, B2, B3, and C) decreased compared to steamed tea leaves. However, the contents of vitamin B1 and iron were insignificantly different between fresh and fermented tea leaves. Five flavonoids (quercetin, kaempferol, cyanidin, myricetin, and apigenin) and three phenolic acids (gallic acid, caffeic acid, and p-coumaric acid) were identified in the tea samples. Total phenolic content (TPC) and antioxidant activities increased significantly after steaming and fermentation, suggesting structural changes in bioactive compounds during these processes. Steamed tea exhibited high inhibition against lipase, α-amylase, and α-glucosidase, while fermented tea possessed high anti-ChE and anti-ACE activities. Fresh tea exhibited high BACE-1 inhibitory activity. Results suggest that tea preparations (steaming and fermentation) play a significant role in the amounts of nutrients and bioactive compounds, which, in turn, affect the in vitro health properties. Knowledge gained from this research will support future investigations on in vivo health properties of fermented tea, as well as promote future food development of fermented tea as a healthy food.
Legumes and pulses are nutrient-dense foods providing a good source of protein, complex carbohydrates, fiber, vitamins, minerals, and bioactive compounds. To breed a new lineage of beans with specific nutritional and health beneficial purposes, more information on original lineage beans must be obtained. However, data concerning the nutritive compositions, total phenolic contents (TPCs), and health benefits regarding the antioxidant potentials of some original lineage beans in Thailand remain scarce, causing difficulty in decisional selection to breed a new lineage. Thus, this study aimed to examine the nutritional values (proximate compositions, vitamins, and minerals), TPCs, and antioxidant activities of ten original lineage bean cultivars in Glycine, Phaseolus, and Vigna genera from Genebank, Department of Agriculture (DOA), Thailand. The results indicated that beans in the Glycine genus potentially provided higher energy, protein, fat, and calcium contents than other genera, while the Phaseolus genus tended to provide higher carbohydrate and dietary fiber. Specifically, lima bean cultivar ‘38’ exhibited high vitamin B1, and red kidney bean cultivar ‘112’ exhibited high potassium content. Beans in the Vigna genus exhibited high TPCs and antioxidant activities. However, their nutritional compositions were markedly varied. The results of this work could support bean consumption as a feasible alternative diet and be used as a reference for future bean breeding (within the same genera) of a new lineage with particular nutritional requirements and health potentials.
Date palm fruit (Phoenix dactylifera L.) is commonly consumed around the world and has recently become an economical crop in Eastern Thailand, especially the Barhi cultivar that can be consumed as fresh fruit. To maintain genetic qualities, date palm is populated through cell culture. This leads to high production costs, while access to this technique is limited. Increasing date palm population by simple seed planting is currently of interest as an alternative for local farmers. Nevertheless, information on nutritive values, bioactive compounds, and health-promoting bioactivities of seed originating from date palm fruit is unavailable. Effects of different planting origins (cell culture origin (CO) and seed origin (SO)) of date palm fruits at the Khalal stage of Barhi cultivar were investigated for nutritive values, bioactive compounds, and in vitro health-promoting properties via key enzyme inhibitions against obesity (lipase), diabetes (α-amylase, α-glucosidase, and dipeptidyl peptidase-IV), Alzheimer’s disease (cholinesterases and β-secretase), and hypertension (angiotensin-converting enzyme). Waste seeds as a by-product from date palm production were also examined regarding these properties to increase seed marketing opportunities for future food applications and other health-related products. CO and SO exhibited insignificant differences in energy, fat, and carbohydrate contents. SO had higher protein, dietary fiber, vitamin A, vitamin E, and calcium contents than CO, while CO contained higher contents of fructose, glucose and maltose. Higher phenolic contents in SO led to greater enzyme inhibitory activities than CO. Interestingly, seeds of date palm fruits mostly contained higher nutritive values than the flesh. No carotenoids were detected in seeds but higher phenolic contents resulted in greater enzyme inhibitory activities than recorded for fruit flesh. Results suggest that appropriate planting of date palm can support the development of novel date palm fruit products, leading to expansion of economic opportunities and investment in date palm fruit agriculture.
The genus Kadsura comprises woody vine plants belonging to the family Schisandraceae . Species are found mostly in Northern Thailand and widely consumed by the local population. Occurrences of these wild fruits are rare as they only grow naturally in forest areas. Nutritive values of Kadsura spp. remain unclear, leading to improper management for food applications. Nutritional composition of Kadsura spp. was evaluated to promote sustainable conservation. Nutritive values in different fruits parts (exocarp, mesocarp, seed and core) of two Kadsura species as Kadsura coccinea (Lem.) A.C. Sm. and Kadsura heteroclita (Roxb.) Craib, from Chiang Rai Province, Thailand were assessed. When comparing nutritional contents based on per 100 g dry weight, results suggested that K. coccinea exhibited higher carbohydrate (1–2 times), sugar (1–2 times) and vitamin C (3–4 times) contents than K. heteroclita , while the latter possessed higher fat (1–2 times), protein (1.6–1.9 times), and dietary fiber (1.5–1.8 times) contents. Considering each fruit part, the mesocarp (the only edible fruit part) and exocarp of both species provided high dietary fiber (11.6–20.9% recommended dietary fiber) and vitamin C (as high as 73% recommended per day) but were low in energy (30–40 kcal/100 g fresh weight), protein (0.6–1.2% recommended per day), fat (0.5–1.8% recommended per day) and sugar (2.4–5.4% recommended per day). Interestingly, seed contained higher energy (1–2 times), protein (2–3 times) and fat (4–50 times) than the other fruit parts. Results support the potential consumption of Kadsura spp. as a healthy fruit that can be used for future food applications. Seed and exocarp from Kadsura spp. also showed potential for new product development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.