A label-free biosensor for Escherichia coli (E. coli) ORN 178 based on faradaic electrochemical impedance spectroscopy (EIS) was developed. α-Mannoside or β-galactoside was immobilized on a gold disk electrode using a self-assembled monolayer (SAM) via a spacer terminated in a thiol functionality. Impedance measurements (Nyquist plot) showed shifts due to the binding of E. coli ORN 178, which is specific for α-mannoside. No significant change in impedance was observed for E. coli ORN 208, which does not bind to α-mannoside. With increasing concentrations of E. coli ORN 178, electron-transfer resistance (R(et)) increases before the sensor is saturated. After the Nyquist plot of E. coli/mixed SAM/gold electrode was modeled, a linear relationship between normalized R(et) and the logarithmic value of E. coli concentrations was found in a range of bacterial concentration from 10(2) to 10(3) CFU/mL. The combination of robust carbohydrate ligands with EIS provides a label-free, sensitive, specific, user-friendly, robust, and portable biosensing system that could potentially be used in a point-of-care or continuous environmental monitoring setting.
A multiwalled carbon nanotube (MWCNT)‐based electrochemical biosensor is developed for monitoring microcystin‐LR (MC‐LR), a toxic cyanobacterial toxin, in sources of drinking water supplies. The biosensor electrodes are fabricated using vertically well‐aligned, dense, millimeter‐long MWCNT arrays with a narrow size distribution, grown on patterned Si substrates by water‐assisted chemical vapor deposition. High temperature thermal treatment (2500 °C) in an Ar atmosphere is used to enhance the crystallinity of the pristine materials, followed by electrochemical functionalization in alkaline solution to produce oxygen‐containing functional groups on the MWCNT surface, thus providing the anchoring sites for linking molecules that allow the immobilization of MC‐LR onto the MWCNT array electrodes. Addition of the monoclonal antibodies specific to MC‐LR in the incubation solutions offers the required sensor specificity for toxin detection. The performance of the MWCNT array biosensor is evaluated using micro‐Raman spectroscopy, including polarized Raman measurements, X‐ray photoelectron spectroscopy, cyclic voltammetry, optical microscopy, and Faradaic electrochemical impedance spectroscopy. A linear dependence of the electron‐transfer resistance on the MC‐LR concentration is observed in the range of 0.05 to 20 μg L−1, which enables cyanotoxin monitoring well below the World Health Organization (WHO) provisional concentration limit of 1 μg L−1 for MC‐LR in drinking water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.